OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 241–246

High phase retardation by waveguiding in slanted photonic nanostructures

Kalle Ventola, Jani Tervo, Pasi Laakkonen, and Markku Kuittinen  »View Author Affiliations

Optics Express, Vol. 19, Issue 1, pp. 241-246 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1310 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a physical mechanism leading to high phase retardation in slanted photonic nanostructures. The phenomenon is based on the waveguiding of the transverse electric polarization component inside the slanted pillars, while the transverse magnetic component is not guided. Such a mechanism leads to very high phase retardation even with shallow structures that are suitable also for lithographical mass production. We present physical principle, numerical analysis of the phenomenon and designs for half-wave retarders. As an experimental result, a slanted grating producing 177 degrees retardation and 95.5% transmission is presented.

© 2011 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(260.5430) Physical optics : Polarization
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: September 14, 2010
Revised Manuscript: October 18, 2010
Manuscript Accepted: October 19, 2010
Published: December 22, 2010

Kalle Ventola, Jani Tervo, Pasi Laakkonen, and Markku Kuittinen, "High phase retardation by waveguiding in slanted photonic nanostructures," Opt. Express 19, 241-246 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  2. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983). [CrossRef]
  3. C. W. Haggans, L. Li, T. Fujita, and R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993). [CrossRef]
  4. N. Passilly, K. Ventola, P. Karvinen, P. Laakkonen, J. Turunen, and J. Tervo, “Polarization conversion in conical diffraction by metallic and dielectric subwavelength gratings,” Appl. Opt. 46, 4258–4265 (2007). [CrossRef] [PubMed]
  5. T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of Half-wave Plates with Subwavelength Structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004). [CrossRef]
  6. B. Wang, J. Jiang, and G. P. Nordin, “Compact slanted grating couplers,” Opt. Express 12, 3313–3326 (2004). [CrossRef] [PubMed]
  7. N. Bonod, E. Popov, L. Li, and B. Chernov, “Unidirectional excitation of surface plasmons by slanted gratings,” Opt. Express 15, 11427–11432 (2007). [CrossRef] [PubMed]
  8. L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A, Pure Appl. Opt. 5, 345–355 (2003). [CrossRef]
  9. T. Levola, and P. Laakkonen, “Replicated slanted gratings with a high refractive index material for in and outcoupling of light,” Opt. Express 15, 2067–2074 (2007). [CrossRef] [PubMed]
  10. B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Express 16, 16334–16342 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited