OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 271–282

Morphology of femtosecond laser modification of bulk dielectrics

K. I. Popov, C. McElcheran, K. Briggs, S. Mack, and L. Ramunno  »View Author Affiliations

Optics Express, Vol. 19, Issue 1, pp. 271-282 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using 3D Finite-Difference-Time-Domain simulations, we study the morphology of the laser-created damage inside fused silica. Among the competing effects limiting the intensity in the dielectric, we find the most important is the pulse defocusing by the plasma lens, partially balanced by the Kerr effect. Less important are collisional energy dissipation and laser depletion by multi-photon absorption. We also found that the profile of generated plasma is asymmetrical in the transverse cross-section, with the plasma extended along the direction perpendicular to the laser polarization.

© 2011 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(260.3230) Physical optics : Ionization

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 2, 2010
Revised Manuscript: December 8, 2010
Manuscript Accepted: December 13, 2010
Published: December 22, 2010

K. I. Popov, C. McElcheran, K. Briggs, S. Mack, and Lora Ramunno, "Morphology of femtosecond laser modification of bulk dielectrics," Opt. Express 19, 271-282 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311–1313 (1999). [CrossRef]
  2. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006). [CrossRef] [PubMed]
  3. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997). [CrossRef]
  4. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008). [CrossRef]
  5. G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009). [CrossRef]
  6. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
  7. J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 036412 (2005). [CrossRef]
  8. D. M. Rayner, A. Naumov, and P. B. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13, 3208–3217 (2005). [CrossRef] [PubMed]
  9. A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005). [CrossRef]
  10. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15, 10303–10317 (2007). [CrossRef] [PubMed]
  11. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007). [CrossRef]
  12. P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40, S273–S282 (2007). [CrossRef]
  13. L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: blast-wave launch and cavity formation,” Phys. Rev. B 76, 024101 (2007). [CrossRef]
  14. D. Grojo, M. Gertsvolf, H. Jean-Ruel, S. Lei, L. Ramunno, D. M. Rayner, and P. B. Corkum, “Self-controlled formation of microlenses by optical breakdown inside wide-band-gap materials,” Appl. Phys. Lett. 93, 243118 (2008). [CrossRef]
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd. ed. (Artech House, 2005), pp. 58–79.
  16. K. S. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. AP-14, 302–307 (1966).
  17. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  18. N. R. L. Plasma Formulary, (2002), p. 28.
  19. C. A. Brau, Modern Problems in Classical Electrodynamics (Oxford Univ. Press, 2004), pp. 342–347.
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd. ed. (Artech House, 2005), pp. 186–213.
  21. K. I. Popov, V. Yu. Bychenkov, W. Rozmus, R. D. Sydora, and S. S. Bulanov, “Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets,” Phys. Plasmas 16, 053106 (2009). [CrossRef]
  22. J. A. Stratton and L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939). [CrossRef]
  23. S. Quabis, R. Dorn, M. Eberler, O. Gl¨ockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000). [CrossRef]
  24. K. I. Popov, V. Yu. Bychenkov, W. Rozmus, and R. D. Sydora, “Electron vacuum acceleration by a tightly focused laser pulse,” Phys. Plasmas 15, 013108 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited