OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 289–296

Numerical demonstration of a three-dimensional negative-index metamaterial at optical frequencies

Boyi Gong and Xiaopeng Zhao  »View Author Affiliations

Optics Express, Vol. 19, Issue 1, pp. 289-296 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As a consequent work of the two-dimensional (2D) dendritic metamaterial which has been systematically studied in our previous work, a model of three-dimensional (3D) sphere-rod shaped structure is presented. Based on Drude model of the dielectric function of silver in the visible region, the parametric curves of electromagnetic response to the incident fields have been retrieved from detailed simulations. It is shown that the simultaneously negative values of permittivity and permeability in the optical range lead to a negative refractive index (NIM) through adjusting structural parameters, only the dimensions of the unit cells satisfy the effective medium theory. We therefore conclude that the proposed model offers a feasible route to fabricating 3D optical NIMs by ‘bottom-up’ approach.

© 2010 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: November 9, 2010
Revised Manuscript: December 9, 2010
Manuscript Accepted: December 10, 2010
Published: December 22, 2010

Boyi Gong and Xiaopeng Zhao, "Numerical demonstration of a three-dimensional negative-index metamaterial at optical frequencies," Opt. Express 19, 289-296 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78(4), 489–491 (2001). [CrossRef]
  4. N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003). [CrossRef] [PubMed]
  5. J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B. I. Wu, J. A. Kong, and M. Chen, “Cerenkov radiation in materials with negative permittivity and permeability,” Opt. Express 11(7), 723–734 (2003). [CrossRef] [PubMed]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  7. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006). [CrossRef] [PubMed]
  8. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006). [CrossRef] [PubMed]
  9. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-founctional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007). [CrossRef] [PubMed]
  10. U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett. 32(12), 1671–1673 (2007). [CrossRef] [PubMed]
  11. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005). [CrossRef] [PubMed]
  12. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005). [CrossRef] [PubMed]
  13. C. Enkrich, F. Perez-Williard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547 (2005). [CrossRef]
  14. X. Zhou, Q. H. Fu, J. Zhao, Y. Yang, and X. P. Zhao, “Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials,” Opt. Express 14(16), 7188–7197 (2006). [CrossRef] [PubMed]
  15. Y. Yao and X. P. Zhao, “Multilevel dendritic structure with simultaneously negative permeability and permittivity,” J. Appl. Phys. 101(12), 124904 (2007). [CrossRef]
  16. Y. Yao, Q. H. Fu, and X. P. Zhao, “Three-level dendritic structure with simultaneously negative permeability and permittivity under normal incidence of electromagnetic wave,” J. Appl. Phys. 105(2), 024911 (2009). [CrossRef]
  17. X. Zhou and X. P. Zhao, “Resonant condition of unitary dendritic structure with overlapping negative permittivity and permeability,” Appl. Phys. Lett. 91(18), 181908 (2007). [CrossRef]
  18. H. Liu, X. P. Zhao, Y. Yang, Q. W. Li, and J. Lv, “Fabrication of infrared left-handed metamaterials via double template-assisted electrochemical deposition,” Adv. Mater. 20(11), 2050–2054 (2008). [CrossRef]
  19. B. Q. Liu, X. P. Zhao, W. R. Zhu, W. Luo, and X. C. Cheng, “Multiple Pass-Band Optical Left-Handed Metamaterials Based on Random Dendritic Cells,” Adv. Funct. Mater. 18(21), 3523–3528 (2008). [CrossRef]
  20. X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett. 95(7), 071111 (2009). [CrossRef]
  21. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  22. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  23. X. D. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004). [CrossRef] [PubMed]
  24. V. D. Lam, J. B. Kim, S. J. Lee, and Y. P. Lee, “Left-handed behavior of combined and fishnet structures,” J. Appl. Phys. 103(3), 033107 (2008). [CrossRef]
  25. R. A. Depine and A. A. Lakhtakia, “New condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microw. Opt. Technol. Lett. 41(4), 315–316 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited