OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 297–305

Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings

Yeong Hwan Ko and Jae Su Yu  »View Author Affiliations


Optics Express, Vol. 19, Issue 1, pp. 297-305 (2011)
http://dx.doi.org/10.1364/OE.19.000297


View Full Text Article

Enhanced HTML    Acrobat PDF (982 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study theoretically and experimentally the hemi-urchin shaped zinc oxide (ZnO) nanostructures for broadband and wide-angle antireflection coatings. The antireflective characteristics of hemi-urchin shaped ZnO nanostructures, which can be formed by integrating one-dimensional (1D) nanostructures (i.e., nanorods) on the periodic 2D structural architecture, are investigated. The optimization process is performed using a rigorous coupled-wave analysis method in terms of the order of taper of Si subwavelength gratings (SWGs) as a 2D structural architecture, the geometry of Si SWGs, and the height/size of ZnO nanorods. To simply test an experimental feasibility, a hemi-urchin shaped ZnO nanostructure is fabricated by hydrothermally growing ZnO nanorods on the periodic Si SWG structure. The angle-dependent reflectance of the hemi-urchin shaped ZnO nanostructures on the Si SWG is compared with that of the vertically aligned ZnO nanorod arrays on the Si substrate. The optimized hemi-urchin shaped ZnO nanostructure can significantly improve the antireflective property by suppressing the surface reflection over a broad spectrum and a wide range of angles of light incidence, indicating a reasonable agreement with the experimental results.

© 2010 OSA

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Thin Films

History
Original Manuscript: November 11, 2010
Manuscript Accepted: December 13, 2010
Published: December 22, 2010

Citation
Yeong Hwan Ko and Jae Su Yu, "Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings," Opt. Express 19, 297-305 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-1-297


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008). [CrossRef] [PubMed]
  2. D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998). [CrossRef]
  3. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008). [CrossRef]
  4. L. Chen, H. Yang, M. Tao, and W. Zhou, “Microstructured anti-reflection surface design for the omni-directional solar cells,” Proc. SPIE 7046, 704608, 704608-11 (2008). [CrossRef]
  5. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  6. Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008). [CrossRef]
  7. J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010). [CrossRef]
  8. C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology 21(47), 475703 (2010). [CrossRef] [PubMed]
  9. N. F. Hartman and T. K. Gaylord, “Antireflection gold surface-relief gratings: experimental characteristics,” Appl. Opt. 27(17), 3738–3743 (1988). [CrossRef] [PubMed]
  10. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008). [CrossRef]
  11. W. Śmigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection gratings for a photonic-crystal flat lens,” Opt. Lett. 34(22), 3532–3534 (2009). [CrossRef] [PubMed]
  12. J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “Self-collimating photonic crystal antireflection structure for both TE and TM polarizations,” Opt. Express 18(12), 13083–13093 (2010). [CrossRef] [PubMed]
  13. Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, “Resonant cavity based compact efficient antireflection structures for photonic crystals,” J. Phys. D Appl. Phys. 40(19), 5873–5877 (2007). [CrossRef]
  14. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003). [CrossRef] [PubMed]
  15. N. C. Linn, C. H. Sun, P. Jiang, and B. Jiang, “Self-assembled biomimetic antireflection coating,” Appl. Phys. Lett. 91(10), 101108 (2007). [CrossRef]
  16. W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coating,” Adv. Mater. 20(20), 3914–3918 (2008). [CrossRef]
  17. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010). [CrossRef]
  18. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010). [CrossRef] [PubMed]
  19. T. Nakanishi, T. Hiraoka, A. Fujimoto, T. Okino, S. Sugimura, T. Shimada, and K. Asakawa, “Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting,” Jpn. J. Appl. Phys. 49(7), 075001 (2010). [CrossRef]
  20. Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett. 34(11), 1702–1704 (2009). [CrossRef] [PubMed]
  21. J. Huang, X. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology 19(2), 025602 (2008). [CrossRef] [PubMed]
  22. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006). [CrossRef] [PubMed]
  23. Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010). [CrossRef]
  24. J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.-Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010). [CrossRef] [PubMed]
  25. Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009). [CrossRef] [PubMed]
  26. B. Liu and H. C. Zeng, “Fabrication of ZnO “dandelions” via a modified Kirkendall process,” J. Am. Chem. Soc. 126(51), 16744–16746 (2004). [CrossRef] [PubMed]
  27. G. Shen, Y. Bando, and C. J. Lee, “Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process,” J. Phys. Chem. B 109(21), 10578–10583 (2005). [CrossRef]
  28. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983). [CrossRef] [PubMed]
  29. Y. H. Ko and J. S. Yu, “Structural and antireflective properties of ZnO nanorods synthesized using the sputtered ZnO seed layer for solar cell applications,” J. Nanosci. Nanotechnol. 10(12), 8095–8101 (2010). [CrossRef] [PubMed]
  30. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited