OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 325–341

Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra

Jens Thomas, Nemanja Jovanovic, Ria G. Becker, Graham D. Marshall, Michael J. Withford, Andreas Tünnermann, Stefan Nolte, and M. J. Steel  »View Author Affiliations


Optics Express, Vol. 19, Issue 1, pp. 325-341 (2011)
http://dx.doi.org/10.1364/OE.19.000325


View Full Text Article

Acrobat PDF (1843 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spectral characteristics of a fiber Bragg grating (FBG) with a transversely inhomogeneous refractive index profile, differs considerably from that of a transversely uniform one. Transmission spectra of inhomogeneous and asymmetric FBGs that have been inscribed with focused ultrashort pulses with the so-called point-by-point technique are investigated. The cladding mode resonances of such FBGs can span a full octave in the spectrum and are very pronounced (deeper than 20dB). Using a coupled-mode approach, we compute the strength of resonant coupling and find that coupling into cladding modes of higher azimuthal order is very sensitive to the position of the modification in the core. Exploiting these properties allows precise control of such reflections and may lead to many new sensing applications.

© 2011 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2340) Fiber optics and optical communications : Fiber optics components
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 1, 2010
Revised Manuscript: December 6, 2010
Manuscript Accepted: December 6, 2010
Published: December 22, 2010

Virtual Issues
January 7, 2011 Spotlight on Optics

Citation
Jens Thomas, Nemanja Jovanovic, Ria G. Becker, Graham D. Marshall, Michael J. Withford, Andreas Tünnermann, Stefan Nolte, and M. J. Steel, "Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra," Opt. Express 19, 325-341 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-1-325


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Erdogan, "Cladding-mode resonances in short- and long-period fiber grating filters," J. Opt. Soc. Am. A 14, 1760-1773 (1997). [CrossRef]
  2. V. Mizrahi, and J. E. Sipe, "Optical properties of photosensitive fiber phase gratings," J. Lightwave Technol. 11, 1513-1517 (1993). [CrossRef]
  3. C. Jáuregui, A. Quintela, and J. M. López-Higuera, "Interrogation unit for fiber Bragg grating sensors that uses a slanted fiber grating," Opt. Lett. 29, 676-678 (2004). [CrossRef]
  4. T. Erdogan, and J. E. Sipe, "Tilted fiber phase gratings," J. Opt. Soc. Am. A 13, 296-313 (1996). [CrossRef]
  5. C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, "Optical fiber refractometer using narrowband cladding-mode resonance shifts," Appl. Opt. 46, 1142-1149 (2007). [CrossRef]
  6. K. Zhou, L. Zhang, X. Chen, and I. Bennion, "Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of 80◦ tilted structures," Opt. Lett. 31, 1193-1195 (2006). [CrossRef]
  7. T. Mizunami, T. Djambova, T. Niiho, and S. Gupta, "Bragg gratings in multimode and few-mode optical fibers," J. Lightwave Technol. 18, 230-235 (2000). [CrossRef]
  8. T. Guo, L. Shao, H.-Y. Tam, P. A. Krug, and J. Albert, "Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling," Opt. Express 17, 20651-20660 (2009). [CrossRef]
  9. T. Guo, A. Ivanov, C. Chen, and J. Albert, "Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling," Opt. Lett. 33, 1004-1006 (2008). [CrossRef]
  10. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, "Direct writing of fibre Bragg gratings by femtosecond laser," Electron. Lett. 40, 1170-1172 (2004). [CrossRef]
  11. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, "Photoinduced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation," IEEE Photon. Technol. Lett. 18, 2266-2268 (2006). [CrossRef]
  12. G. Marshall, R. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, "Point-by-point written fiber-Bragg gratings and their application in complex grating designs," Opt. Express 18, 19844-19859 (2010). [CrossRef]
  13. J. Thomas, E. Wikszak, T. Clausnitzer, and U. Fuchs, "Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique," Appl. Phys., A Mater. Sci. Process. 86, 153-157 (2007).
  14. N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, "Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers," Opt. Express 17, 6082-6095 (2009). [CrossRef]
  15. C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Formation of type i-ir and type ii-ir gratings with an ultrafast ir laser and a phase mask," Opt. Express 13, 5377-5386 (2005). [CrossRef]
  16. A. Snyder, and W. Young, "Modes of optical waveguides," J. Opt. Soc. Am. 68, 297-309 (1978). [CrossRef]
  17. S. J. Hewlett, J. D. Love, G. Meltz, T. J. Bailey, and W. W. Morey, "Cladding-mode coupling characteristics of Bragg gratings in depressed-cladding fibre," Electron. Lett. 31, 820-822 (1995). [CrossRef]
  18. S. Hewlett, J. Love, G. Meltz, T. Bailey, and W. Morey, "Coupling characteristics of photo-induced Bragg gratings in depressed-and matched-cladding fibre," Opt. Quantum Electron. 28, 1641-1654 (1996). [CrossRef]
  19. C. Tsao, and D. Payne, "andW. Gambling, "Modal characteristics of three-layered optical fiber waveguides: a modified approach," J. Opt. Soc. Am. A 6, 555-563 (1989). [CrossRef]
  20. M. J. Steel, "Reflection symmetry and mode transversality in microstructured fibers," Opt. Express 12, 1497-1509 (2004). [CrossRef]
  21. B. E. A. Saleh, M. C. Teich, and J. W. Goodman, Fundamentals of photonics, (Wiley, 1991) pp. 272-309.
  22. H. Kogelnik, "Theory of dielectric waveguides," Top. Appl. Phys. 7, 15-83 (1979).
  23. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999). [CrossRef]
  24. S. Ramachandran, J. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, "Ultra-large effective area, higher-order mode fibers: A new strategy for high-power lasers," Laser Photon. Rev. 2, 429-447 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited