OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 40–46

Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating

Jia Liu, Yahui Feng, Hao Li, Peifen Lu, Haifeng Pan, Jian Wu, and Heping Zeng  »View Author Affiliations

Optics Express, Vol. 19, Issue 1, pp. 40-46 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1565 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that complex supercontinuum and few-cycle ultrashort laser pulses can be fully characterized by using a cross-correlation frequency-resolved optical gating with molecular alignment induced birefringence functioned as a gate. The temporal envelope and phase of the broadband supercontinuum pulse are retrieved by the principal component generalized projection algorithm. This technique shows advantages without phase-matching constraint that may limit the measurable spectral bandwidth, experimental robustness in operating through the whole transparent spectral region of the molecular gases, and intensity sensitivity to measure weak pulses which is inherited from the intrinsic linear process in recording the molecular birefringence induced polarization spectroscopy. Experimental measurements of a few-cycle pulse in the visible region of 525-725 nm confirm that the molecular alignment gating supports a full field characterization of the ultrashort pulse around 10 fs in duration.

© 2010 OSA

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

Original Manuscript: November 4, 2010
Revised Manuscript: December 7, 2010
Manuscript Accepted: December 13, 2010
Published: December 20, 2010

Jia Liu, Yahui Feng, Hao Li, Peifen Lu, Haifeng Pan, Jian Wu, and Heping Zeng, "Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating," Opt. Express 19, 40-46 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, “Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient,” Opt. Lett. 30(19), 2657–2659 (2005). [CrossRef] [PubMed]
  2. J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, J. P. Wolf, J. Kasparian, and R. Sauerbrey, “Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air,” Opt. Lett. 26(8), 533–535 (2001). [CrossRef]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001). [CrossRef]
  4. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002). [CrossRef]
  5. P. Lu, J. Liu, H. Li, H. Pan, J. Wu, and H. Zeng, “Cross-correlation frequency-resolved optical gating by molecular alignment for ultraviolet femtosecond pulse measurement,” Appl. Phys. Lett. 97(6), 061101 (2010). [CrossRef]
  6. H. Stapelfeldt and T. Seideman, “Colloquium: Aligning molecules with strong laser pulses,” Rev. Mod. Phys. 75(2), 543–557 (2003). [CrossRef]
  7. R. Weigand, J. T. Mendonça, and H. M. Crespo, “Cascaded nondegenerate four-wave-mixing technique for high-power single-cycle pulse synthesis in the visible and ultraviolet ranges,” Phys. Rev. A 79(6), 063838 (2009). [CrossRef]
  8. V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90(15), 153601 (2003). [CrossRef] [PubMed]
  9. J. Wu, H. Cai, Y. Tong, and H. Zeng, “Measurement of field-free molecular alignment by cross-defocusing assisted polarization spectroscopy,” Opt. Express 17(18), 16300–16305 (2009). [CrossRef] [PubMed]
  10. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004). [CrossRef] [PubMed]
  11. R. Velotta, N. Hay, M. B. Mason, M. Castillejo, and J. P. Marangos, “High-order harmonic generation in aligned molecules,” Phys. Rev. Lett. 87(18), 183901 (2001). [CrossRef]
  12. T. Kanai, S. Minemoto, and H. Sakai, “Quantum interference during high-order harmonic generation from aligned molecules,” Nature 435(7041), 470–474 (2005). [CrossRef] [PubMed]
  13. S. Varma, Y.-H. Chen, and H. M. Milchberg, “Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air,” Phys. Rev. Lett. 101(20), 205001 (2008). [CrossRef] [PubMed]
  14. H. Cai, J. Wu, X. Bai, H. Pan, and H. Zeng, “Molecular-alignment-assisted high-energy supercontinuum pulse generation in air,” Opt. Lett. 35(1), 49–51 (2010). [CrossRef] [PubMed]
  15. J. Wu, Y. Tong, X. Yang, H. Cai, P. Lu, H. Pan, and H. Zeng, “Interaction of two parallel femtosecond filaments at different wavelengths in air,” Opt. Lett. 34(20), 3211–3213 (2009). [CrossRef] [PubMed]
  16. H. Cai, J. Wu, H. Li, X. Bai, and H. Zeng, “Elongation of femtosecond filament by molecular alignment in air,” Opt. Express 17(23), 21060–21065 (2009). [CrossRef] [PubMed]
  17. J. Wu, P. Lu, J. Liu, H. Li, H. Pan, and H. Zeng, “Ultrafast optical imaging by molecular wakes,” Appl. Phys. Lett. 97(16), 161106 (2010). [CrossRef]
  18. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57(18), 2268–2271 (1986). [CrossRef] [PubMed]
  19. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277 (1997). [CrossRef]
  20. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993). [CrossRef] [PubMed]
  21. K. W. De Long, D. N. Fittinghoff, R. Trebino, B. Kohler, and K. Wilson, “Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections,” Opt. Lett. 19(24), 2152–2154 (1994). [CrossRef]
  22. J. Wu, H. Cai, P. Lu, X. Bai, L. Ding, and H. Zeng, “Intense ultrafast light kick by rotational Raman wake in atmosphere,” Appl. Phys. Lett. 95(22), 221502 (2009). [CrossRef]
  23. C. Marceau, Y. Chen, F. Théberge, M. Châteauneuf, J. Dubois, and S. L. Chin, “Ultrafast birefringence induced by a femtosecond laser filament in gases,” Opt. Lett. 34(9), 1417–1419 (2009). [CrossRef] [PubMed]
  24. A. Baltuška, M. S. Pshenichnikov, and D. A. Wiersma, “Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating,” Opt. Lett. 23(18), 1474–1476 (1998). [CrossRef]
  25. S. Akturk, C. D'Amico, and A. Mysyrowicz, “Measuring ultrashort pulses in the single-cycle regime using frequency-resolved optical gating,” J. Opt. Soc. Am. B 25(6), A63 (2008). [CrossRef]
  26. Z. Wang, E. Zeek, R. Trebino, and P. Kvam, “Determining error bars in measurements of ultrashort laser pulses,” J. Opt. Soc. Am. B 20(11), 2400 (2003). [CrossRef]
  27. K. W. DeLong, R. Trebino, and W. E. White, “Simultaneous recovery of two ultrashort laser pulses from a single spectrogram,” J. Opt. Soc. Am. B 12(12), 2463 (1995). [CrossRef]
  28. W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. R. Flannery, Numerical Recipes in FORTRAN: the Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited