OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 55–65

Engineered optical nonlinearity for quantum light sources

Agata M. Brańczyk, Alessandro Fedrizzi, Thomas M. Stace, Tim C. Ralph, and Andrew G. White  »View Author Affiliations


Optics Express, Vol. 19, Issue 1, pp. 55-65 (2011)
http://dx.doi.org/10.1364/OE.19.000055


View Full Text Article

Enhanced HTML    Acrobat PDF (1469 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many applications in optical quantum information processing benefit from careful spectral shaping of single-photon wave-packets. In this paper we tailor the joint spectral wave-function of photons created in parametric downconversion by engineering the nonlinearity profile of a poled crystal. We design a crystal with an approximately Gaussian nonlinearity profile and confirm successful wave-packet shaping by two-photon interference experiments. We numerically show how our method can be applied for attaining one of the currently most important goals of single-photon quantum optics, the creation of pure single photons without spectral correlations.

© 2011 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: November 12, 2010
Revised Manuscript: December 9, 2010
Manuscript Accepted: December 9, 2010
Published: December 20, 2010

Citation
Agata M. Brańczyk, Alessandro Fedrizzi, Thomas M. Stace, Tim C. Ralph, and Andrew G. White, "Engineered optical nonlinearity for quantum light sources," Opt. Express 19, 55-65 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-1-55


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.  79(1), 135 (2007). [CrossRef]
  2. N. Gisin, and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007). [CrossRef]
  3. B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberglimited phase estimation,” Nature 450(7168), 393–396 (2007). [CrossRef]
  4. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the Standard Quantum Limit with Four-Entangled Photons,” Science 316(5825), 726 (2007). [CrossRef] [PubMed]
  5. G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010). [CrossRef]
  6. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000). [CrossRef] [PubMed]
  7. M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.  100(18), 183,601 (2008).
  8. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. QE-28, 2631–2654 (1992). [CrossRef]
  9. G. Imeshev, M. Fejer, A. Galvanauskas, and D. Harter, “Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings,” J. Opt. Soc. Am. B 18(4), 534–539 (2001). [CrossRef]
  10. P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A72(5), 052,332 (2005). [CrossRef]
  11. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50(6), 5122–5133 (1994). [CrossRef] [PubMed]
  12. The crystal was custom-made by Raicol Crystals Ltd., www.raicol.com.
  13. A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping theWaveform of Entangled Photons,” Phys. Rev. Lett. 99(24), 243,601 (2007). [CrossRef]
  14. C. Hong, Z. Ou, and L. Mandel, “Measurement of Subpicosecond Time Intervals between Two Photons by Interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987). [CrossRef] [PubMed]
  15. A. Fedrizzi, T. Herbst, M . Aspelmeyer, M . Barbieri, T. Jennewein, and A . Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103,052 (2009). [CrossRef]
  16. K. Wang, “Quantum theory of two-photon wavepacket interference in a beamsplitter,” J. Phys. B 39(18), R293–R324 (2006). [CrossRef]
  17. A. Eckstein, and C. Silberhorn, “Broadband frequency mode entanglement in waveguided parametric down conversion,” Opt. Lett. 33(16), 1825–1827 (2008). [CrossRef] [PubMed]
  18. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64(6), 063,815 (2001). [CrossRef]
  19. Y.-H. Kim and W. P. Grice, “Generation of pulsed polarization-entangled two-photon state via temporal and spectral engineering,” J. Mod. Opt. 49(14–15), 2309–2323 (2002). [CrossRef]
  20. A. B . U’Ren,C . Silberhorn, K . Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Phys. 15, 146–161 (2005).
  21. M. A. Branczyk, T. C. Ralph, W . Helwig, and C . Silberhorn, “Optimised generation of heralded Fock states using parametric down conversion,” New J. Phys.  12, 063,001 (2010). [CrossRef]
  22. S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete tunable color entanglement,” Phys. Rev. Lett. 103(25), 253601 (2009). [CrossRef]
  23. L. Olislager, J. Cussey, A. Nguyen, P. Emplit, S. Massar, J. Merolla, K. Huy, H . Cecena-Alvarez, A . Peimbert-Torres, R . Gomez-Gonzalez, et al., “Frequency-bin entangled photons,” Phys. Rev. A 82(1), 13,804 (2010). [CrossRef]
  24. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73(1), 12,316 (2006). [CrossRef]
  25. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007). [CrossRef] [PubMed]
  26. K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A 80, 052321 (2009). [CrossRef]
  27. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. Wadsworth, and J. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express 17, 4670–4676 (2009). [CrossRef] [PubMed]
  28. W. P. Grice, and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56(2), 1627–1634 (1997). [CrossRef]
  29. Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70(5), 052,317 (2004). [CrossRef]
  30. A. B . U’Ren, R. K . Erdmann, M . de la Cruz-Gutierrez, and I. A . Walmsley, “Generation of Two-Photon States with an Arbitrary Degree of Entanglement Via Nonlinear Crystal Superlattices,” Phys. Rev. Lett.  97(22), 223,602 (2006). [CrossRef]
  31. M. Corona and A. B . U’Ren, “Parametric down-conversion with optimized spectral properties in nonlinear photonic crystals,” Phys. Rev. A 76(4), 043829 (2007). [CrossRef]
  32. A. B . U’Ren, Y . Jeronimo-Moreno, and H . Garcia-Gracia, “Generation of Fourier-transform-limited heralded single photons,” Phys. Rev. A 75(2), 023810 (2007). [CrossRef]
  33. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint Temporal Density Measurements for Two-Photon State Characterization,” Phys. Rev. Lett. 101(15), 153602 (2008). [CrossRef] [PubMed]
  34. P. J. Mosley, J. S. Lundeen, B. J. Smith, and P. Wasylczyk, A. B . U’Ren, C . Silberhorn, and I. A . Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008). [CrossRef] [PubMed]
  35. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15(22), 14,870–14,886 (2007). [CrossRef]
  36. A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-IPDC with backward-wave amplification,” Opt. Express 17(5), 3441–3446 (2009). [CrossRef] [PubMed]
  37. M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity,” Phys. Rev. A 72(2), 023,825 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited