OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 1 — Jan. 3, 2011
  • pp: 66–80

All-solid highly nonlinear singlemode fibers with a tailored dispersion profile

Francesco Poletti, Xian Feng, Giorgio M. Ponzo, Marco N. Petrovich, Wei H. Loh, and David J. Richardson  »View Author Affiliations

Optics Express, Vol. 19, Issue 1, pp. 66-80 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2505 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate a novel approach to obtain highly nonlinear fibers with a tailored group velocity dispersion around a desired wavelength region of interest. Rather than exploiting longitudinal holes to control the average refractive index of the cladding and hence the fiber’s waveguide dispersion, as in holey fibers, we propose using an all-solid cladding with a suitably chosen refractive index difference relative to the core. We demonstrate numerically that this solution allows a large freedom in the manipulation of the overall fiber dispersive properties, while enabling, in practice, a much more accurate control of the fiber’s structural properties during fabrication. Effectively single mode guidance over a broad wavelength range can be achieved through the use of a second outer cladding forming a W-type index profile. We derive simple design rules for dispersion controlled fibers, based on which an algorithm for the automatic dispersion optimization is proposed, implemented and used to design various nonlinear fibers for all-optical processing and supercontinuum generation. Fabrication of a lead silicate fiber with flattened dispersion at telecoms wavelengths confirms the potential of these new fibers.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 3, 2010
Revised Manuscript: October 25, 2010
Manuscript Accepted: October 27, 2010
Published: December 21, 2010

Francesco Poletti, Xian Feng, Giorgio M. Ponzo, Marco N. Petrovich, Wei H. Loh, and David J. Richardson, "All-solid highly nonlinear singlemode fibers with a tailored dispersion profile," Opt. Express 19, 66-80 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear fiber optics, 3rd ed. (Academic Press, San Diego, 2001).
  2. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986). [CrossRef] [PubMed]
  3. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007). [CrossRef]
  4. F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20(16), 1414–1416 (2008). [CrossRef]
  5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  6. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008). [CrossRef] [PubMed]
  7. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, M. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007). [CrossRef]
  8. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-loss and low-dispersion-slope highly nonlinear fibers,” J. Lightwave Technol. 23(11), 3615–3624 (2005). [CrossRef]
  9. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  10. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000). [CrossRef]
  11. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express 14(10), 4445–4451 (2006). [CrossRef] [PubMed]
  12. W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. J. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002). [PubMed]
  13. K. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11(13), 1503–1509 (2003). [CrossRef] [PubMed]
  14. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003). [CrossRef] [PubMed]
  15. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13(10), 3728–3736 (2005). [CrossRef] [PubMed]
  16. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all optical processing at telecoms wavelengths,” Opt Fiber Technol (invited and submitted, 2010).
  17. A. W. Snyder and X. H. Zheng, “Optical Fibers of Arbitrary Cross-Sections,” J. Opt. Soc. Am. A 3(5), 600–609 (1986). [CrossRef]
  18. A. W. Snyder, and J. D. Love, Optical waveguide theory (Chapman and Hall, London; New York, 1983).
  19. A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9(13), 687–697 (2001). [CrossRef] [PubMed]
  20. Schott Optical glass catalogue 2009, available from http://www.schott.com .
  21. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  22. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006). [CrossRef]
  23. S. H. Wemple, “Material dispersion in optical fibers,” Appl. Opt. 18(1), 31–35 (1979). [CrossRef] [PubMed]
  24. F. X. Gan, “Optical-Properties of Fluoride Glasses - a Review,” J. Non-Cryst. Solids 184, 9–20 (1995). [CrossRef]
  25. D. E. Zelmon, S. S. Bayya, J. S. Sanghera, and I. D. Aggarwal, “Dispersion of barium gallogermanate glass,” Appl. Opt. 41(7), 1366–1367 (2002). [CrossRef] [PubMed]
  26. T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008). [CrossRef]
  27. G. Ghosh, “Sellmeier Coefficients and Chromatic Dispersions for Some Tellurite Glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995). [CrossRef]
  28. T. Mito, S. Fujino, H. Takebe, K. Morinaga, S. Todoroki, and S. Sakaguchi, “Refractive index and material dispersions of multi-component oxide glasses,” J. Non-Cryst. Solids 210(2-3), 155–162 (1997). [CrossRef]
  29. W. S. Rodney, I. H. Malitson, and T. A. King, “Refractive index of Arsenic Trisulfide,” J. Opt. Soc. Am. 48(9), 633–636 (1958). [CrossRef]
  30. A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Low noise broadband tellurite-based Er3+-doped fibre amplifiers,” Electron. Lett. 34(9), 887–888 (1998). [CrossRef]
  31. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1km−1,” Optical Fiber Communications Conference (OFC) 2004, PDP26.
  32. R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, P. E. Miklos, and I. D. Aggarwal, “Fabrication of single-mode chalcogenide optical fiber,” J. Lightwave Technol. 16(2), 214–217 (1998). [CrossRef]
  33. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008). [CrossRef]
  34. N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express 17(20), 18076–18082 (2009). [CrossRef] [PubMed]
  35. A. S. Markus, G. Nicolai, W. Lothar, and R. Philip St, “Optical Properties of Chalcogenide-Filled Silica-Air PCF,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2009), AThD3.
  36. M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009). [CrossRef] [PubMed]
  37. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express 17(22), 20249–20255 (2009). [CrossRef] [PubMed]
  38. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003). [CrossRef] [PubMed]
  39. A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010). [CrossRef] [PubMed]
  40. A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fiber,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010). [CrossRef]
  41. A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. Richardson, and P. Petropoulos, “Multichannel Wavelength Conversion of 40Gbit/s Non-Return-to-Zero DPSK Signals in a Lead Silicate Fibre,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010). [CrossRef]
  42. K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002). [CrossRef]
  43. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1μm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006). [CrossRef]
  44. D. Gloge, “Dispersion in weakly guiding fibers,” Appl. Opt. 10(11), 2442–2445 (1971). [CrossRef] [PubMed]
  45. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited