OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 10017–10028

Broadband near UV to visible optical activity measurement using self-heterodyned method

Intae Eom, Sung-Hyun Ahn, Hanju Rhee, and Minhaeng Cho  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 10017-10028 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1259 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that broadband electronic optical activity can be measured with supercontinuum light pulse generated by a femtosecond pump (800 nm). It is the self-heterodyned detection technique that enables us to selectively measure the real (optical rotatory dispersion, ORD) or imaginary (circular dichroism, CD) part of the chiroptical susceptibility by controlling the incident polarization state. The single-shot-based measurement that is capable of correcting power fluctuations of the continuum light is realized by using a fast CCD detector and a polarizing beam splitter. Particularly, non-differential scheme used does not rely on any polarization-switching components. We anticipate that this broadband CD/ORD spectrometry with intrinsically ultrafast time-resolution will be applied to a variety of ultrafast chiroptical dynamics studies.

© 2011 OSA

OCIS Codes
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:

Original Manuscript: November 4, 2011
Revised Manuscript: March 5, 2011
Manuscript Accepted: May 5, 2011
Published: June 5, 2011

Intae Eom, Sung-Hyun Ahn, Hanju Rhee, and Minhaeng Cho, "Broadband near UV to visible optical activity measurement using self-heterodyned method," Opt. Express 19, 10017-10028 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications, 2nd ed. (Wiley-VCH, 2000).
  2. X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of carbon monoxide,” J. Am. Chem. Soc. 112(21), 7802–7803 (1990). [CrossRef]
  3. J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy - experiment, theory, and applications to biological systems,” J. Phys. Chem. 96(13), 5243–5254 (1992). [CrossRef]
  4. C. F. Zhang, J. W. Lewis, R. Cerpa, I. D. Kuntz, and D. S. Kliger, “Nanosecond circular dichroism spectral measurements - extension to the far-ultraviolet region,” J. Phys. Chem. 97(21), 5499–5505 (1993). [CrossRef]
  5. D. B. Shapiro, R. A. Goldbeck, D. Che, R. M. Esquerra, S. J. Paquette, and D. S. Kliger, “Nanosecond optical rotatory dispersion spectroscopy: application to photolyzed hemoglobin-CO kinetics,” Biophys. J. 68(1), 326–334 (1995). [CrossRef] [PubMed]
  6. E. Chen, Y. Wen, J. W. Lewis, R. A. Goldbeck, D. S. Kliger, and C. E. M. Strauss, “Nanosecond laser temperature-jump optical rotatory dispersion: application to early events in protein folding/unfolding,” Rev. Sci. Instrum. 76(8), 083120 (2005). [CrossRef]
  7. E. Chen, R. A. Goldbeck, and D. S. Kliger, “Nanosecond time-resolved polarization spectroscopies: tools for probing protein reaction mechanisms,” Methods 52(1), 3–11 (2010). [CrossRef] [PubMed]
  8. T. Dartigalongue and F. Hache, “Observation of sub-100 ps conformational changes in photolyzed carbonmonoxy-myoglobin probed by time-resolved circular dichroism,” Chem. Phys. Lett. 415(4-6), 313–316 (2005). [CrossRef]
  9. C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil Compensator,” J. Opt. Soc. Am. B 23(11), 2418–2424 (2006). [CrossRef]
  10. C. Niezborala and F. Hache, “Conformational changes in photoexcited (R)-(+)-1,1′-bi-2-naphthol studied by time-resolved circular dichroism,” J. Am. Chem. Soc. 130(38), 12783–12786 (2008). [CrossRef] [PubMed]
  11. A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum. 81(4), 043104 (2010). [CrossRef] [PubMed]
  12. M. Bonmarin and J. Helbing, “A picosecond time-resolved vibrational circular dichroism spectrometer,” Opt. Lett. 33(18), 2086–2088 (2008). [CrossRef] [PubMed]
  13. J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys. 131(17), 174507 (2009). [CrossRef] [PubMed]
  14. H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: theory,” J. Chem. Phys. 129(9), 094507 (2008). [CrossRef] [PubMed]
  15. H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458(7236), 310–313 (2009). [CrossRef] [PubMed]
  16. H. Rhee, Y.-G. June, Z. H. Kim, S.-J. Jeon, and M. Cho, “Phase sensitive detection of vibrational optical activity free-induction-decay: vibrational CD and ORD,” J. Opt. Soc. Am. B 26(5), 1008–1017 (2009). [CrossRef]
  17. H. Rhee, S.-S. Kim, S.-J. Jeon, and M. Cho, “Femtosecond measurements of vibrational circular dichroism and optical rotatory dispersion spectra,” ChemPhysChem 10(13), 2209–2211 (2009). [CrossRef] [PubMed]
  18. H. Rhee, J.-H. Choi, and M. Cho, “Infrared optical activity: electric field approaches in time domain,” Acc. Chem. Res. 43(12), 1527–1536 (2010). [CrossRef] [PubMed]
  19. H. Rhee, S.-S. Kim, and M. Cho, “Multichannel array detection of vibrational optical activity free-induction-decay,” J. Anal. Sci. Technol. 1(2), 147–151 (2010). [CrossRef]
  20. G. D. Goodno and R. J. D. Miller, “Femtosecond heterodyne-detected four-wave-mixing studies of deterministic protein motions. 1. theory and experimental technique of diffractive optics-based spectroscopy,” J. Phys. Chem. A 103(49), 10619–10629 (1999). [CrossRef]
  21. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005). [CrossRef] [PubMed]
  22. T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004). [CrossRef] [PubMed]
  23. N. Belabas and M. Joffre, “Visible-infrared two-dimensional Fourier-transform spectroscopy,” Opt. Lett. 27(22), 2043–2045 (2002). [CrossRef]
  24. T. Zhang, C. N. Borca, X. Li, and S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express 13(19), 7432–7441 (2005). [CrossRef] [PubMed]
  25. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995). [CrossRef]
  26. W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, “Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry,” Opt. Lett. 22(2), 81–83 (1997). [CrossRef] [PubMed]
  27. S. M. Gallagher, A. W. Albrecht, T. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, “Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals,” J. Opt. Soc. Am. B 15(8), 2338–2345 (1998). [CrossRef]
  28. M. T. Zanni, N. H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11265–11270 (2001). [CrossRef] [PubMed]
  29. S.-H. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett. 32(10), 1332–1334 (2007). [CrossRef] [PubMed]
  30. R. M. Esquerra, J. W. Lewis, and D. S. Kliger, “An improved linear retarder for time-resolved circular dichroism studies,” Rev. Sci. Instrum. 68(3), 1372–1376 (1997). [CrossRef]
  31. K. C. Hannah and B. A. Armitage, “DNA-templated assembly of helical cyanine dye aggregates: a supramolecular chain polymerization,” Acc. Chem. Res. 37(11), 845–853 (2004). [CrossRef] [PubMed]
  32. C. Kolano, J. Helbing, M. Kozinski, W. Sander, and P. Hamm, “Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy,” Nature 444(7118), 469–472 (2006). [CrossRef] [PubMed]
  33. S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007). [CrossRef] [PubMed]
  34. S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A Fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284(4), 1062–1066 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited