OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9027–9034

Pure optical photoacoustic microscopy

Zhixing Xie, Sung-Liang Chen, Tao Ling, L. Jay Guo, Paul L. Carson, and Xueding Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9027-9034 (2011)
http://dx.doi.org/10.1364/OE.19.009027


View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After the refinements of the microring’s working wavelength and in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×105 was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM with high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5 μm and an axial resolution of 8 μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation properties at depths in unfrozen tissue specimens or thicker tissue sections, which is not now imageable with current optical or acoustic microscopes of comparable resolution.

© 2011 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.5120) Imaging systems : Photoacoustic imaging
(230.5750) Optical devices : Resonators

ToC Category:
Microscopy

History
Original Manuscript: February 9, 2011
Revised Manuscript: April 4, 2011
Manuscript Accepted: April 10, 2011
Published: April 25, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Zhixing Xie, Sung-Liang Chen, Tao Ling, L. Jay Guo, Paul L. Carson, and Xueding Wang, "Pure optical photoacoustic microscopy," Opt. Express 19, 9027-9034 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9027


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fernandez-Suarez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008). [CrossRef] [PubMed]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  3. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  4. X. Zhuang, “Nano-imaging with Storm,” Nat. Photonics 3(7), 365–367 (2009). [CrossRef] [PubMed]
  5. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006). [CrossRef] [PubMed]
  6. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008). [CrossRef] [PubMed]
  7. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009). [CrossRef] [PubMed]
  8. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 25(7), 114–116 (2003).
  9. L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008). [CrossRef]
  10. S. Ashkenazi, C.-Y. Chao, L. J. Guo, and M. O’Donnell; “Ultrasound detection using polymer microring optical resonator,” Appl. Phys. Lett. 85(22), 5418–5420 (2004). [CrossRef]
  11. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008). [CrossRef] [PubMed]
  12. S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008). [CrossRef]
  13. H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S. L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010). [CrossRef]
  14. C. Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique,” J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002). [CrossRef]
  15. T. Ling, S. L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer microring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011). [CrossRef] [PubMed]
  16. P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999). [CrossRef]
  17. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited