OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9118–9126

Filamentation in air with ultrashort mid-infrared pulses

Bonggu Shim, Samuel E. Schrauth, and Alexander L. Gaeta  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9118-9126 (2011)
http://dx.doi.org/10.1364/OE.19.009118


View Full Text Article

Enhanced HTML    Acrobat PDF (1287 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate filamentation of ultrashort laser pulses in air in the mid-infrared regime under conditions in which the group-velocity dispersion (GVD) is anomalous. When a high-power, ultra-short mid-infrared laser beam centered at 3.1-μm forms a filament, a spatial solitary wave is stabilized by the plasma formation and propagates several times its diffraction length. Compared with temporal self-compression in gases due to plasma formation and pulse splitting in the normal-GVD regime, the minimum achievable pulse duration (∼ 70 fs) is limited by the bandwidth of the anomalous-GVD region in air. For the relatively high powers, multiple pulse splitting due to the plasma effect and shock formation is observed, which is similar to that which occurs in solids. Our simulations show that the energy reservoir also plays a critical role for longer propagation of the air filament in the anomalous-GVD regime.

© 2011 OSA

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 12, 2011
Revised Manuscript: April 4, 2011
Manuscript Accepted: April 16, 2011
Published: April 26, 2011

Citation
Bonggu Shim, Samuel E. Schrauth, and Alexander L. Gaeta, "Filamentation in air with ultrashort mid-infrared pulses," Opt. Express 19, 9118-9126 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9118


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou,“Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-20-1-73 . [CrossRef] [PubMed]
  2. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–65 (1996), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-21-1-62 . [CrossRef] [PubMed]
  3. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-5-304 . [CrossRef] [PubMed]
  4. J. R. Peñano, P. Sprangle, B. Hafizi, A. Ting, D. F. Gordon, and C. A. Kapetanakos, “Propagation of ultra-short, intense laser pulses in air,” Phys. Plasmas 11, 2865 (2004). [CrossRef]
  5. A. Ting, I. Alexeev, D. Gordon, R. Fischer, D. Kaganovich, T. Jones, E. Briscoe, J. Peñano, R. Hubbard, and P. Sprangle, “Measurements of intense femtosecond laser pulse propagation in air,” Phys. Plasmas 12, 056705 (2005). [CrossRef]
  6. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005). [CrossRef]
  7. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]
  8. L. Bergé, S Skupin, R Nuter, J Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633 (2007). [CrossRef]
  9. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-466 . [CrossRef] [PubMed]
  10. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39, 205 (2009). [CrossRef]
  11. L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronneberger, H. Schillinger, and R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51 (1997).
  12. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000). [CrossRef]
  13. J.-C. Diels, R. Bernstein, K. Stahlkopf, and X. M. Zhao, “Lightning control with lasers,” Sci. Am. 277, 50–55 (1997). [CrossRef]
  14. R. P. Fischer, A. C. Ting, D. F. Gordon, R. F. Fernsler, D. P. DiComo, and P. Sprangle, “Conductivity measurements of femtosecond laserplasma filaments,” IEEE Trans. Plasma Sci. 35, 1430 (2007). [CrossRef]
  15. A. Houard, C. D’Amico, Y. Liu, Y. B. Andre, M. Franco, B. Prade, A. Mysyrowicz, E. Salmon, P. Pierlot, and L.-M. Cleon, “High current permanent discharges in air induced by femtosecond laser filamentation,” Appl. Phys. Lett. 90, 171501 (2007). [CrossRef]
  16. See, for example, The Supercontinuum Laser Source , ed. by R. R. Alfano (Springer-Verlag, 1989).
  17. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004). [CrossRef]
  18. C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98, 235002 (2007). [CrossRef] [PubMed]
  19. K. D. Moll and A. L. Gaeta, “Role of dispersion in multiple-collapse dynamics,” Opt. Lett. 29, 995–997 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-9-995 . [CrossRef] [PubMed]
  20. A. Saliminia, S. L. Chin, and R. Vallée, “Ultra-broad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 um,” Opt. Express 13, 5731–5738 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-15-5731 . [CrossRef] [PubMed]
  21. M. A. Porras, A. Dubietis, A. Matijošius, R. Piskarskas, F. Bragheri, A. Averchi, and P. Di Trapani, “Characterization of conical emission of light filaments in media with anomalous dispersion,” J. Opt. Soc. Am. B 24, 581–584 (2007), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-3-581 . [CrossRef]
  22. M. Trippenbach and Y. B. Band, “Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media,” Phys. Rev. A 57, 4791 (1998). [CrossRef]
  23. L. Bergé and S. Skupin, “Self-channeling of ultrashort laser pulses in materials with anomalous dispersion,” Phys. Rev. E 71, 065601 (2005). [CrossRef]
  24. J. Liu, R. Li, and Z. Xu, “Few-cycle spatiotemporal soliton wave excited with filamentation of a femtosecond laser pulse in materials with anomalous dispersion,” Phys. Rev. A 74, 043801 (2006). [CrossRef]
  25. L. Bergé and S. Skupin, “Few-cycle light bullets created by femtosecond filaments,” Phys. Rev. Lett. 100, 113902 (2008). [CrossRef] [PubMed]
  26. Although 3-D optical bullets are predicted to be unstable and have not been experimentally observed, several approaches have been theoretically proposed recently. For example, see [27–30].
  27. M. Belić, N. Petrović, W.-P. Zhong, R.-H. Xie, and G. Chen, “Analytical light bullet solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation,” Phys. Rev. Lett. 101, 123904 (2008). [CrossRef] [PubMed]
  28. L. Torner and Y. V. Kartashov, “Light bullets in optical tandems,” Opt. Lett. 34, 1129–1131 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-7-1129 . [CrossRef] [PubMed]
  29. I. B. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102, 203903 (2009). [CrossRef] [PubMed]
  30. S. Chen and J. M. Dudley, “Spatiotemporal nonlinear optical self-similarity in three dimensions,” Phys. Rev. Lett. 102, 233903 (2009). [CrossRef] [PubMed]
  31. I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, “Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation,” Phys. Rev. Lett. 84, 3847–3850 (2000). [CrossRef] [PubMed]
  32. A. L. Gaeta and F. W. Wise, Comment on “Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation,” Phys. Rev. Lett. 87, 229401 (2001). [CrossRef] [PubMed]
  33. L. Bergé and A. Couairon, “Gas-induced solitons,” Phys. Rev. Lett. 86, 1003–1006 (2001). [CrossRef] [PubMed]
  34. T.-T. Xi, X. Lu, and J. Zhang, “Interaction of light filaments generated by femtosecond laser pulses in air,” Phys. Rev. Lett. 96, 025003 (2006). [CrossRef] [PubMed]
  35. L. M. Kovachev, “Collapse arrest and self-guiding of femtosecond pulses,” Opt. Express 15, 10318–10323 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-16-10318 . [CrossRef] [PubMed]
  36. P. Agostini and L. F. DiMauro, “Atoms in high intensity mid-infrared pulses,” Contemp. Phys. 49, 179 (2008). [CrossRef]
  37. O. Chalus, A. Thai, P. K. Bates, and J. Biegert, “Six-cycle mid-infrared source with 3.8 μJ at 100 kHz,” Opt. Lett. 35, 3204–3206 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-19-3204 . [CrossRef] [PubMed]
  38. T. Popmintchev, M. Chen, P. Arpin, M. Gerrity, M. Seaberg, B. Zhang, D. Popmintchev, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuška, M. Murnane, and H. Kapteyn, “Bright coherent ultrafast X-rays from mid-IR lasers,” in High Intensity Lasers and High Field Phenomena, OSA Technical Digest (CD) (Optical Society of America, 2011), paper HThB5, http://www.opticsinfobase.org/abstract.cfm?URI=HILAS-2011-HThB5 .
  39. N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping,” Phys. Rev. Lett. 93, 173902 (2004). [CrossRef] [PubMed]
  40. A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75–85 (2006). [CrossRef]
  41. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274–276 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-274 . . [CrossRef] [PubMed]
  42. S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006). [CrossRef]
  43. L. T. Vuong, R. B. Lopez-Martens, C. P. Hauri, and A. L. Gaeta, “Spectral reshaping and pulse compression via sequential filamentation in gases,” Opt. Express 16, 390–401 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-390 . [CrossRef] [PubMed]
  44. F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, “Route to attosecond nonlinear spectroscopy,” Phys. Rev. Lett. 105, 243902 (2010). [CrossRef]
  45. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997). [CrossRef]
  46. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000). [CrossRef] [PubMed]
  47. M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional optical pulse propagation equation,” Phys. Rev. Lett. 89, 283902 (2002). [CrossRef]
  48. We calculate the dispersion parameters up to sixth-order order since the formula for the refractive index of air (n0) is a function of the fifth-order Tayolor expansion in Ref. [49] and thus the wavelumber (k = ωn0/c) is a sixth-order function of the laser angular frequency.
  49. R. J. Mathar, “Refractive index of humid air in the infrared: model fits,” J. Opt. A, Pure Appl. Opt. 9, 470 (2007). [CrossRef]
  50. R. J. Mathar, “Calculated refractivity of water vapor and moist air in the atmospheric window at 10 μm,” Appl. Opt. 43, 928 (2004). [CrossRef] [PubMed]
  51. See, for example, http://irina.eas.gatech.edu/irina/eas8803_fall2009/Lec6.pdf .
  52. G. Fibich and A. L. Gaeta, “On the critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25, 335–337 (2000), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-5-335 . [CrossRef]
  53. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985). [CrossRef]
  54. A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A 58, 3303–3310 (1998). [CrossRef]
  55. G. P. AgrawalNolinear Fiber Optics , (Academic Press, 2007).
  56. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999). [CrossRef]
  57. M. Kolesik and J. V. Moloney, “Self-healing femtosecond light filaments,” Opt. Lett. 29, 590–592 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-6-590 . [CrossRef] [PubMed]
  58. F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Rev. Lett. 83, 213 (2003). [CrossRef]
  59. A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92, 253903 (2004). [CrossRef] [PubMed]
  60. G. Méchain, G. Méjean, R. Ackermann, P. Rohwetter, Y.-B. André, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L. A. (Vern) Schlie, A. Mysyrowicz, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Propagation of fs TW laser filaments in adverse atmospheric conditions,” Appl. Phys. B 80, 785–789 (2005). [CrossRef]
  61. W. Liu, F. Théberge, E. Arévalo, J.-F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30, 2602–2604 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-19-2602 . [CrossRef] [PubMed]
  62. S. Eisenmann, J. Peñano, P. Sprangle, and A. Zigler, “Effect of an energy reservoir on the atmospheric propagation of laser-plasma filaments,” Phys. Rev. Lett. 100, 155003 (2008). [CrossRef] [PubMed]
  63. Z. Hao, J. Zhang, X. Lu, T. Xi, Z. Zhang, and Z. Wang, “Energy interchange between large-scale free propagating filaments and its background reservoir,” J. Opt. Soc. Am. B 26, 499–502 (2009), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-3-499 . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited