OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9127–9138

Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance

Mathieu Rozé, Bora Ung, Anna Mazhorova, Markus Walther, and Maksim Skorobogatiy  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9127-9138 (2011)
http://dx.doi.org/10.1364/OE.19.009127


View Full Text Article

Enhanced HTML    Acrobat PDF (1572 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we report two designs of subwavelength fibers packaged for practical terahertz wave guiding. We describe fabrication, modeling and characterization of microstructured polymer fibers featuring a subwavelength-size core suspended in the middle of a large porous outer cladding. This design allows convenient handling of the subwavelength fibers without distorting their modal profile. Additionally, the air-tight porous cladding serves as a natural enclosure for the fiber core, thus avoiding the need for a bulky external enclosure for humidity-purged atmosphere. Fibers of 5 mm and 3 mm in outer diameters with a 150 µm suspended solid core and a 900 µm suspended porous core respectively, were obtained by utilizing a combination of drilling and stacking techniques. Characterization of the fiber optical properties and the subwavelength imaging of the guided modes were performed using a terahertz near-field microscopy setup. Near-field imaging of the modal profiles at the fiber output confirmed the effectively single-mode behavior of such waveguides. The suspended core fibers exhibit transmission from 0.10 THz to 0.27 THz (larger core), and from 0.25 THz to 0.51 THz (smaller core). Due to the large fraction of power that is guided in the holey cladding, fiber propagation losses as low as 0.02 cm−1 are demonstrated specifically for the small core fiber. Low-loss guidance combined with the core isolated from environmental perturbations make these all-dielectric fibers suitable for practical terahertz imaging and sensing applications.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(160.5470) Materials : Polymers
(060.4005) Fiber optics and optical communications : Microstructured fibers
(180.4243) Microscopy : Near-field microscopy
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 7, 2011
Revised Manuscript: April 13, 2011
Manuscript Accepted: April 20, 2011
Published: April 26, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Mathieu Rozé, Bora Ung, Anna Mazhorova, Markus Walther, and Maksim Skorobogatiy, "Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance," Opt. Express 19, 9127-9138 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9127


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010). [CrossRef] [PubMed]
  2. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004). [CrossRef]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  4. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef] [PubMed]
  5. T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005). [CrossRef]
  6. R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001). [CrossRef]
  7. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999). [CrossRef]
  8. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006). [CrossRef] [PubMed]
  9. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002). [CrossRef]
  10. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006). [CrossRef] [PubMed]
  11. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  12. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007). [CrossRef]
  13. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg Fibers,” J. Opt. Soc. Am. B (to be published).
  14. J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004). [CrossRef] [PubMed]
  15. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007). [CrossRef] [PubMed]
  16. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007). [CrossRef]
  17. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13(2), 511–518 (2005). [CrossRef] [PubMed]
  18. A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13828 (2010). [CrossRef] [PubMed]
  19. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008). [CrossRef] [PubMed]
  20. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008). [CrossRef]
  21. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008). [CrossRef] [PubMed]
  22. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009). [CrossRef] [PubMed]
  23. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009). [CrossRef] [PubMed]
  24. J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981). [CrossRef]
  25. A. Bitzer, H. Helm, and M. Walther, “Beam-profiling and wavefront-sensing of THz pulses at the focus of a substrate-lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 476–481 (2008). [CrossRef]
  26. A. Bitzer, A. Ortner, and M. Walther, “Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas,” Appl. Opt. 49(19), E1–E6 (2010). [CrossRef] [PubMed]
  27. A. Bitzer and M. Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett. 92(23), 231101 (2008). [CrossRef]
  28. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010). [CrossRef] [PubMed]
  29. M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University Press, 2009).
  30. A. Mazhorova, J. F. Gu, A. Dupuis, M. Peccianti, O. Tsuneyuki, R. Morandotti, H. Minamide, M. Tang, Y. Wang, H. Ito, and M. Skorobogatiy, “Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation,” Opt. Express 18(24), 24632–24647 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2657 KB)     
» Media 2: MOV (2342 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited