OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9192–9200

Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods

Martin S. Heimbeck, Myung K. Kim, Don A. Gregory, and Henry O. Everitt  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9192-9200 (2011)
http://dx.doi.org/10.1364/OE.19.009192


View Full Text Article

Enhanced HTML    Acrobat PDF (1165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Terahertz digital off-axis holography is demonstrated using a Mach-Zehnder interferometer with a highly coherent, frequency tunable, continuous wave terahertz source emitting around 0.7 THz and a single, spatially-scanned Schottky diode detector. The reconstruction of amplitude and phase objects is performed digitally using the angular spectrum method in conjunction with Fourier space filtering to reduce noise from the twin image and DC term. Phase unwrapping is achieved using the dual wavelength method, which offers an automated approach to overcome the 2π phase ambiguity. Potential applications for nondestructive test and evaluation of visually opaque dielectric and composite objects are discussed.

© 2011 OSA

OCIS Codes
(090.1995) Holography : Digital holography
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Holography

History
Original Manuscript: March 10, 2011
Revised Manuscript: April 15, 2011
Manuscript Accepted: April 20, 2011
Published: April 26, 2011

Citation
Martin S. Heimbeck, Myung K. Kim, Don A. Gregory, and Henry O. Everitt, "Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods," Opt. Express 19, 9192-9200 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9192


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Shen and R. Wei, “Digital holography particle image velocimetry for the measurement of 3Dt-3c flows,” Opt. Lasers Eng. 43(10), 1039–1055 (2005). [CrossRef]
  2. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7(9), 305–310 (2000). [CrossRef] [PubMed]
  3. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008). [CrossRef] [PubMed]
  4. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” in Proceedings of the National Academy of Science USA, (PNAS, 2001) pp. 11301–11305.
  5. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004). [CrossRef] [PubMed]
  6. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005). [CrossRef] [PubMed]
  7. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004). [CrossRef]
  8. X. Song, Z. Tang, and H. Wang, “Simple and robust digital holography for phase imaging of microstructure,” Proceedings of IEEE, Control and Decision Conference (IEEE, 2009), pp.4656–4658.
  9. L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40(28), 5046–5051 (2001). [CrossRef]
  10. G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, M. Iodice, C. Magro, and G. Pierattini, “Characterization of MEMS structures by microscopic digital holography,” Proc. SPIE 4945, 71–78 (2003). [CrossRef]
  11. Z. Fan, H. Pang, W. Wang, C. Ning, and F. Guo, “Three dimensional deformation measurements with digital holography,” Proceedings of IEEE International Congress on Image and Signal Processing (IEEE, 2009), pp. 1–5.
  12. G. Pedrini and H. J. Tiziani, “Quantitative evaluation of two-dimensional dynamic deformations using digital holography,” Opt. Laser Technol. 29(5), 249–256 (1997). [CrossRef]
  13. P. Picart, J. Leval, D. Mounier, and S. Gougeon, “Some opportunities for vibration analysis with time averaging in digital Fresnel holography,” Appl. Opt. 44(3), 337–343 (2005). [CrossRef] [PubMed]
  14. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999). [CrossRef]
  15. G. L. Chen, C. Y. Lin, M. K. Kuo, and C. C. Chang, “Numerical reconstruction and twin-image suppression using an off-axis Fresnel digital hologram,” Appl. Phys. B 90(3-4), 527–532 (2008). [CrossRef]
  16. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30(16), 2092–2094 (2005). [CrossRef] [PubMed]
  17. C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005). [CrossRef] [PubMed]
  18. www.virginiadiodes.com
  19. www.zomega-terahertz.com
  20. K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008). [CrossRef]
  21. J. Pearce, H. Choi, D. M. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30(13), 1653–1655 (2005). [CrossRef] [PubMed]
  22. A. Tamminen, J. Ala-Laurinaho, and A.V. Rӓisӓnen, “Indirect holographic imaging: evaluation of image quality at 310 GHz,” Proc. SPIE 7670, A1–A11 (2010).
  23. A. A. Gorodetsky and V. G. Bespalov, “THz computational holography process & optimization,” Proc. SPIE 6893, F1–F9 (2008).
  24. R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006). [CrossRef]
  25. Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz Digital Holography,” Strain 44(5), 380–385 (2008). [CrossRef]
  26. A. A. Gorodetsky and V. G. Bespalov, “THz pulse time-domain holography,” Proc. SPIE 7601, 71–76 (2010).
  27. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003). [CrossRef] [PubMed]
  28. Attempts to collimate the beam using plastic lenses made of polytetrafluoroethylene (PTFE) and high-density polyethylene (HDPE) showed undesirable Fabry-Perot effects between the lens surfaces, causing significant phase noise in the hologram.
  29. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Englewood, Greenwood Village, Colorado, 2005).
  30. U. Schnars, T. M. Kreis, and W. P. O. Jüpner, “Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum,” Opt. Eng. 35(4), 977–982 (1996). [CrossRef]
  31. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179–2181 (2002). [CrossRef]
  32. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006). [CrossRef] [PubMed]
  33. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45(5), 822–828 (2006). [CrossRef] [PubMed]
  34. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143 (2002). [CrossRef]
  35. B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, and D. G. Esaev, “Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application: Journal of Infrared Millimeter Terahertz Waves (online-only) (2011).
  36. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974–976 (2008). [CrossRef] [PubMed]
  37. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49(19), E67–E82 (2010). [CrossRef] [PubMed]
  38. M. K. Kim, L. Yu, and C. J. Mann, “Interference techniques in digital holography,” J. Opt. A, Pure Appl. Opt. 8(7), S518–S523 (2006). [CrossRef]
  39. www.mathworks.com

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited