OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9245–9254

Quaternary ultraviolet AlInGaN MQW laser diode performance using quaternary AlInGaN electron blocking layer

A. J. Ghazai, S. M. Thahab, H. Abu Hassan, and Z. Hassan  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9245-9254 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1161 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of polarization-matched Al0.25In0.08Ga0.67N electron-blocking layer (EBL) on the optical performance of ultraviolet Al0.08In0.08Ga0.84N/ Al0.1In0.01Ga0.84N multi-quantum well (MQW) laser diodes (LDs) was investigated. The polarization-matched Al0.25In0.08Ga0.67N electron blocking layer (EBL) was employed in an attempt to reduce the polarization effect inside the active region of the diodes. The device performance which is affected by piezoelectric was studied via drift-diffusion model for carrier transport, optical gain and losses using the simulation program of Integrated System Engineering Technical Computer Aided design (ISE TCAD). The optical performance of the LD using quaternary Al0.25In0.08Ga0.67N EBL was compared with the LD using ternary Al0.3Ga0.7N EBL where both materials have the same energy band gap of Eg = 3.53 eV. The self-consistent ISE-TCAD simulation program results showed that the polarization-matched quaternary Al0.25In0.08Ga0.67N EBL is beneficial as it confines the electrons inside the quantum well region better than ternary Al0.3Ga0.7N EBL. The results indicated that the use of Al0.25In0.08Ga0.67N EBL has lower threshold current and higher optical intensity than those for Al0.3Ga0.7N EBL. The effect of Al0.25In0.08Ga0.67N EBL thickness on the performance of LDs has also been studied. Results at room temperature indicated that lower threshold current, high slope efficiency, high output power, and high differential quantum efficiency DQE occurred when the thickness of Al0.25In0.08Ga0.67N EBL was 0.25 µm.

© 2011 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(270.0270) Quantum optics : Quantum optics

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 21, 2010
Revised Manuscript: February 14, 2011
Manuscript Accepted: February 18, 2011
Published: April 27, 2011

A. J. Ghazai, S. M. Thahab, H. Abu Hassan, and Z. Hassan, "Quaternary ultraviolet AlInGaN MQW laser diode performance using quaternary AlInGaN electron blocking layer," Opt. Express 19, 9245-9254 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. H. Chang, J. R. Chen, C. H. Lee, and C. H. Yang, “Effect of built-in polarization and carrier overflow on InGaN quantum well lasers with AlGaN or AlInGaN electronic blocking layers,” Proc. SPIE 6368, 636813, 636813-10 (2006). [CrossRef]
  2. J. Lee, P. G. Eliseev, M. Osinski, D.-S. Lee, D. I. Florescu, and M. Pophristic, “InGaN-based ultraviolet emitting heterostructures with quaternary AlInGaN barriers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1239–1245 (2003). [CrossRef]
  3. T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, “100-mW kink-free blue-violet laser diodes with low aspect ratio,” IEEE J. Quantum Electron. 39(1), 135–140 (2003). [CrossRef]
  4. J. R. Chen, C. H. Lee, T. S. Ko, Y. A. Chang, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with electronic blocking layers,” J. Lightwave Technol. 26(3), 329–337 (2008). [CrossRef]
  5. J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18(1), 7–9 (2006). [CrossRef]
  6. Y.-K. Kuo, M.-C. Tsai, and S.-H. Yen, “Numerical simulation of blue InGaN light-emitting diodes with polarization-matched AlGaInN electron-blocking layer and barrier layer,” Opt. Commun. 282(21), 4252–4255 (2009). [CrossRef]
  7. H. Y. Ryu, K. H. Ha, S. N. Lee, K. K. Choi, T. Jang, J. K. Son, J. H. Chae, S. H. Chae, H. S. Paek, Y. J. Sung, T. Sakong, H. G. Kim, K. S. Kim, Y. H. Kim, O. H. Nam, and Y. J. Park, “Single-mode blue-violet laser diodes with low beam divergence and high COD level,” IEEE Photon. Technol. Lett. 18(9), 1001–1003 (2006). [CrossRef]
  8. ISE TCAD User’s Manual Release 10.0, Zurich, Switzerland, 2004, http://www.synopsy.com .
  9. J. Minch, S.H. Park, T. Keating, and S.L. Chuang, “Theory and experiment of In1-xGaxAsy P1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999). [CrossRef]
  10. S. L. Chuang and C. S. Chang, “k⋅p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996). [CrossRef]
  11. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5876 (2001). [CrossRef]
  12. V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002). [CrossRef]
  13. F. Bernardini and V. Fiorentini, “Nonlinear macroscopic polarization in III-V nitride alloys,” Phys. Rev. B 64(8), 085207–085214 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited