OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9269–9281

Multiscale beam evolution and shaping in corrugated plasmonic systems

S. Thongrattanasiri, D. C. Adams, D. Wasserman, and V. A. Podolskiy  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9269-9281 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1154 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze, theoretically and experimentally, the dynamics of the wavepackets in plasmonic beaming devices, and show that the beam evolution in this class of structures is a multiscale phenomenon, which initiates in the near-field proximity of the device, develops continuously over a new length scale many times the wavelength of the light, and is completed well into the far-field of the system. We develop a quantitative description of the light evolution in the beaming structures and verify our theoretical predictions with experiments. Our analytical results are utilized to develop plasmonic geometries for shaping the mid-field beam evolution, and experimental results from these structures are demonstrated.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3060) Physical optics : Infrared
(260.3160) Physical optics : Interference

ToC Category:
Optics at Surfaces

Original Manuscript: February 15, 2011
Revised Manuscript: April 11, 2011
Manuscript Accepted: April 16, 2011
Published: April 27, 2011

S. Thongrattanasiri, D. C. Adams, D. Wasserman, and V. A. Podolskiy, "Multiscale beam evolution and shaping in corrugated plasmonic systems," Opt. Express 19, 9269-9281 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the flow of light (Princeton U. Press, 1995).
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef] [PubMed]
  3. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  4. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nature Photon. 1, 224–227 (2007). [CrossRef]
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef] [PubMed]
  6. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  7. F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003). [CrossRef]
  8. D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96, 201112 (2010).
  9. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photon. 2, 564–570 (2008). [CrossRef]
  10. M. Born and E. Wolf, Principles of Optics (Cambridge Univ., 1999).
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  12. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef] [PubMed]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  14. A. Krier, Mid-infrared Semiconductor Optoelectronics (Springer, 2006). [CrossRef]
  15. I. I. Smolyaninov, D. L. Mazzoni, and C. D. Davis, “Imaging of surface plasmon scattering by lithographically created individual surface defects,” Phys. Rev. Lett. 77, 3877–3880 (2003). [CrossRef]
  16. I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and T. W. Ebbesen, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56, 1601–1611 (2003). [CrossRef]
  17. A. V. Shchegrov, I. V. Novikov, and A. A. Maradudin, “Scattering of surface plasmon polaritons by a circularly symmetric surface defect,” Phys. Rev. Lett. 78, 4269–4272 (2003). [CrossRef]
  18. E.D. Palik, The Handbook of Optical Constants of Solids (Academic, 1997).
  19. M. A. Ordal, L. L. Long, R. J. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Optics 22, 1099–1119 (1983). [CrossRef]
  20. For details see COMSOL Multiphysics 3.5a User’s Guide and RF Module User’s Guide, www.comsol.com .
  21. S. Thongrattanasiri, J. Elser, and V. A. Podolskiy, “Quasi-planar optics: computing light propagation and scattering in planar waveguide arrays,” J. Opt. Soc. Am. B 26, B102–B110 (2009). [CrossRef]
  22. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade lase,” Nature Photon. 3, 586–590 (2009) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited