OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9303–9308

Vacuum electron acceleration driven by a tightly focused radially polarized Gaussian beam

Lin Dai, Jian-Xing Li, Wei-Ping Zang, and Jian-Guo Tian  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9303-9308 (2011)
http://dx.doi.org/10.1364/OE.19.009303


View Full Text Article

Enhanced HTML    Acrobat PDF (1002 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electron acceleration in vacuum driven by a tightly focused radially polarized Gaussian beam has been studied in detail. Weniger transformation method is used to eliminate the divergence of the radially polarized electromagnetic field derived from the Lax series approach. And, electron dynamics in an intense radially polarized Gaussian beam is analyzed by using the Weniger transformation field. The roles of the initial phase of the electromagnetic field and the injection angle, position and energy of electron in energy gain of electron have been studied in detail.

© 2011 OSA

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

History
Original Manuscript: March 7, 2011
Revised Manuscript: April 13, 2011
Manuscript Accepted: April 18, 2011
Published: April 27, 2011

Citation
Lin Dai, Jian-Xing Li, Wei-Ping Zang, and Jian-Guo Tian, "Vacuum electron acceleration driven by a tightly focused radially polarized Gaussian beam," Opt. Express 19, 9303-9308 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9303


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, “Petawatt laser pulses,” Opt. Lett. 24(3), 160–162 (1999). [CrossRef]
  2. Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002). [CrossRef] [PubMed]
  3. N. Cao, Y. K. Ho, Q. Kong, P. X. Wang, X. Q. Yuan, Y. Nishida, N. Yugami, and H. Ito, “Accurate description of Gaussian laser beams and electron dynamics,” Opt. Commun. 204(1-6), 7–15 (2002). [CrossRef]
  4. Y. I. Salamin, “Electron acceleration from rest in vacuum by an axicon Gaussian laser beam,” Phys. Rev. A 73(4), 043402 (2006). [CrossRef]
  5. J. X. Li, W. P. Zang, and J. G. Tian, “Electron acceleration in vacuum induced by a tightly focused chirped laser pulse,” Appl. Phys. Lett. 96(3), 031103 (2010). [CrossRef]
  6. J. X. Li, W. P. Zang, and J. G. Tian, “Analysis of electron capture acceleration channel in an Airy beam,” Opt. Lett. 35(19), 3258–3260 (2010). [CrossRef] [PubMed]
  7. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  8. S. X. Hu and A. F. Starace, “Laser acceleration of electrons to giga-electron-volt energies using highly charged ions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(6), 066502 (2006). [CrossRef] [PubMed]
  9. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11(4), 1365–1370 (1975). [CrossRef]
  10. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979). [CrossRef]
  11. Y. I. Salamin, “Fields of a radially polarized Gaussian laser beam beyond the paraxial approximation,” Opt. Lett. 31(17), 2619–2621 (2006). [CrossRef] [PubMed]
  12. H. Luo, S. Y. Liu, Z. F. Lin, and C. T. Chan, “Method for accurate description of a radially polarized Gaussian laser beam beyond the paraxial approximation,” Opt. Lett. 32(12), 1692–1694 (2007). [CrossRef] [PubMed]
  13. R. Borghi and M. Santarsiero, “Summing Lax series for nonparaxial beam propagation,” Opt. Lett. 28(10), 774–776 (2003). [CrossRef] [PubMed]
  14. J. X. Li, W. P. Zang, and J. G. Tian, “Simulation of Gaussian laser beams and electron dynamics by Weniger transformation method,” Opt. Express 17(7), 4959–4969 (2009). [CrossRef] [PubMed]
  15. J. X. Li, W. P. Zang, Y.-D. Li, and J. G. Tian, “Acceleration of electrons by a tightly focused intense laser beam,” Opt. Express 17(14), 11850–11859 (2009). [CrossRef] [PubMed]
  16. A. Doicu and T. Wriedt, “Plane wave spectrum of electromagnetic beams,” Opt. Commun. 136(1-2), 114–124 (1997). [CrossRef]
  17. P. Varga and P. Török, “The Gaussian wave solution of Maxwell’s equations and the validity of scalar wave approximation,” Opt. Commun. 152(1-3), 108–118 (1998). [CrossRef]
  18. Y. I. Salamin, “Accurate fields of radially polarized Gaussian laser beam,” N. J. Phys. 8(8), 133 (2006). [CrossRef]
  19. E. J. Weniger, “Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series,” Comput. Phys. Rep. 10(5-6), 189–371 (1989). [CrossRef]
  20. U. D. Jentschura, J. Becher, E. J. Weniger, and G. Soff, “Resummation of QED perturbation series by sequence transformations and the prediction of perturbative coefficients,” Phys. Rev. Lett. 85(12), 2446–2449 (2000). [CrossRef] [PubMed]
  21. E. J. Weniger, “Summation of divergent power series by means of factorial series,” Appl. Numer. Math. 60(12), 1429–1441 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited