OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9315–9329

Multispectral image enhancement for effective visualization

Noriaki Hashimoto, Yuri Murakami, Pinky A. Bautista, Masahiro Yamaguchi, Takashi Obi, Nagaaki Ohyama, Kuniaki Uto, and Yukio Kosugi  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9315-9329 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Color enhancement of multispectral images is useful to visualize the image’s spectral features. Previously, a color enhancement method, which enhances the feature of a specified spectral band without changing the average color distribution, was proposed. However, sometimes the enhanced features are indiscernible or invisible, especially when the enhanced spectrum lies outside the visible range. In this paper, we extended the conventional method for more effective visualization of the spectral features both in visible range and non-visible range. In the proposed method, the user specifies both the spectral band for extracting the spectral feature and the color for visualization respectively, so that the spectral feature is enhanced with arbitrary color. The proposed color enhancement method was applied to different types of multispectral images where its effectiveness to visualize spectral features was verified.

© 2011 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.2980) Image processing : Image enhancement
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Image Processing

Original Manuscript: January 11, 2011
Revised Manuscript: April 7, 2011
Manuscript Accepted: April 15, 2011
Published: April 28, 2011

Noriaki Hashimoto, Yuri Murakami, Pinky A. Bautista, Masahiro Yamaguchi, Takashi Obi, Nagaaki Ohyama, Kuniaki Uto, and Yukio Kosugi, "Multispectral image enhancement for effective visualization," Opt. Express 19, 9315-9329 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt. 37, 6329–6338 (1998). [CrossRef]
  2. J. A. Gualtieri and R. F. Cromp, “Support vector machines for hyperspectral remote sensing classification,” Proc. SPIE 3584, 221–232 (1999). [CrossRef]
  3. B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39, 887–896 (2000). [CrossRef]
  4. M. Yamaguchi, T. Teraji, K. Ohsawa, T. Uchiyama, H. Motomura, Y. Murakami, and N. Ohyama, “Color image reproduction based on the multispectral and multiprimary imaging: Experimental evaluation,” Proc. SPIE 4663, 15–26 (2002). [CrossRef]
  5. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002). [CrossRef]
  6. A. R. Gillespie, A. B. Kahle, and R. E. Walker, “Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches,” Remote Sens. Environ. 20, 209–235 (1986). [CrossRef]
  7. J. Ward, V. Magnotta, N. C. Andreasen, W. Ooteman, P. Nopoulos, and R. Pierson, “Color enhancement of multispectral MR images: Improving the visualization of subcortical structures,” J. Comput. Assist. Tomogr. 25, 942–949 (2001). [CrossRef] [PubMed]
  8. M. Mitsui, Y. Murakami, T. Obi, M. Yamaguchi, and N. Ohyama, “Color enhancement in multispectral image using the Karhunen-Loeve transform,” Opt. Rev. 12, 69–75 (2005). [CrossRef]
  9. M. Yamaguchi, M. Mitsui, Y. Murakami, H. Fukuda, N. Ohyama, and Y. Kubota, “Multispectral color imaging for dermatology: application in inflammatory and immunologic diseases,” in Proceedings of 13th Color Imaging Conference (Society for Imaging Science and Technology/Society for Information Display, 2005), pp. 52–58.
  10. Y. Murakami, T. Obi, M. Yamaguchi, N. Ohyama, and Y. Komiya, “Spectral reflectance estimation from multi-band image using color chart,” Opt. Commun. 188, 47–54 (2001). [CrossRef]
  11. P. A. Bautista, T. Abe, M. Yamaguchi, and N. Ohyama, “Multispectral image enhancement for H&E stained pathological tissue specimens,” Proc. SPIE 6918, 691836 (2008). [CrossRef]
  12. N. Kosaka, K. Uto, and Y. Kosugi, “ICA-aided mixed-pixel analysis of hyperspectral data in agricultural land,” IEEE Trans. Geosci. Remote Sens. 2, 220–224 (2005). [CrossRef]
  13. D. Scribner, P. Warren, J. Schuler, M. Satyshur, and M. Kruer, “Infrared color vision: an approach to sensor fusion,” Opt. Photon. News 9, 27–32 (1998). [CrossRef]
  14. D. Scribner, P. Warren, and J. Schuler, “Extending color vision methods to bands beyond the visible,” Machine Vision Appl. 11, 306–312 (2000). [CrossRef]
  15. M. Vilaseca, J. Pujol, M. Arjona, and F. M. Martínez-Verdú, “Color visualization system for near-infrared multispectral images,” J. Imaging Sci. Technol. 49, 246–255 (2005).
  16. N. P. Jacobson and M. R. Gupta, “Design goals and solutions for display of hyperspectral images,” IEEE Trans. Geosci. Remote Sens. 43, 2684–2692 (2005). [CrossRef]
  17. P. A. Bautista, T. Abe, M. Yamaguchi, Y. Yagi, and N. Ohyama, “Digital staining for multispectral images of pathological tissue specimens based on combined classification of spectral transmittance,” Comput. Med. Imaging Graph. 29, 649–657 (2005). [CrossRef] [PubMed]
  18. S. Itano, T. Akiyama, H. Ishida, T. Okubo, and N. Watanabe, “Spectral characteristics of aboveground biomass, plant coverage, and plant height in Italian Ryegrass (Lolium multiflorum L.) meadows,” Grassland Sci. 46, 1–9 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited