OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9345–9351

Dispersion of nonlinearity and modulation instability in subwavelength semiconductor waveguides

A.V. Gorbach, X. Zhao, and D.V. Skryabin  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9345-9351 (2011)
http://dx.doi.org/10.1364/OE.19.009345


View Full Text Article

Enhanced HTML    Acrobat PDF (925 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tight confinement of light in subwavelength waveguides induces substantial dispersion of their nonlinear response. We demonstrate that this dispersion of nonlinearity can lead to the modulational instability in the regime of normal group velocity dispersion through the mechanism independent from higher order dispersions of linear waves. A simple phenomenological model describing this effect is the nonlinear Schrödinger equation with the intensity dependent group velocity dispersion.

© 2011 OSA

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 10, 2011
Revised Manuscript: March 30, 2011
Manuscript Accepted: March 31, 2011
Published: April 28, 2011

Citation
A.V. Gorbach, X. Zhao, and D.V. Skryabin, "Dispersion of nonlinearity and modulation instability in subwavelength semiconductor waveguides," Opt. Express 19, 9345-9351 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9345


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kolesik, E. M. Wright, and J. V. Moloney, “Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers,” Appl. Phys. B 79, 293–300 (2004). [CrossRef]
  2. A. V. Gorbach and D. V. Skryabin, “Spatial solitons in periodic nanostructures,” Phys. Rev. A 79, 053812 (2009). [CrossRef]
  3. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009). [CrossRef] [PubMed]
  4. T. X. Tran and F. Biancalana, “An accurate envelope equation for light propagation in photonic nanowires: new nonlinear effects,” Opt. Express 17, 17934–17949 (2009). [CrossRef] [PubMed]
  5. N. C. Panoiu, X. P. Liu, and R. M. Osgood, “Self-steepening of ultrashort pulses in silicon photonic nanowires,” Opt. Lett. 34, 947–949 (2009). [CrossRef] [PubMed]
  6. A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwave-length waveguides,” Phys. Rev. A 82, 041802 (2010). [CrossRef]
  7. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006). [CrossRef] [PubMed]
  8. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009). [CrossRef]
  9. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17, 2182–2187 (2009). [CrossRef] [PubMed]
  10. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta , “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef] [PubMed]
  11. S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, “Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation,” Phys. Rev. A 43, 6162–6165 (1991). [CrossRef] [PubMed]
  12. F. Biancalana, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing instabilities in photonic-crystal and tapered fibers,” Phys. Rev. E 68, 046603 (2003). [CrossRef]
  13. G. Van Simaeys, Ph. Emplit, and M. Haelterman, “Experimental demonstration of the fermi-pasta-ulam recurrence in a modulationally unstable optical wave,” Phys. Rev. Lett. 87, 033902 (2001). [CrossRef] [PubMed]
  14. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009). [CrossRef]
  15. M. J. Potasek, “Modulation instability in an extended nonlinear Schrdinger equation,” Opt. Lett. 12, 921–923 (1987) [CrossRef] [PubMed]
  16. Y. Xiang, S. Wen, X. Dai, Z. Tang, W. Su, and D. Fan, “Modulation instability induced by nonlinear dispersion in nonlinear metamaterials,” J. Opt. Soc. Am. B 24, 3058–3063 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited