OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9352–9363

Accessing photon bunching with a photon number resolving multi-pixel detector

Dmitry A. Kalashnikov, Si Hui Tan, Maria V. Chekhova, and Leonid A. Krivitsky  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9352-9363 (2011)
http://dx.doi.org/10.1364/OE.19.009352


View Full Text Article

Enhanced HTML    Acrobat PDF (1137 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In quantum optics and its applications, there is an urgent demand for photon-number resolving detectors. Recently, there appeared multi-pixel counters (MPPC) that are able to distinguish between 1,2,..10 photons. At the same time, strong coupling between different pixels (crosstalk) hinders their photon-number resolution. In this work, we suggest a method for `filtering out’ the crosstalk effect in the measurement of intensity correlation functions. The developed approach can be expanded to the analysis of higher-order intensity correlations by using just a single MPPC.

© 2011 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(270.5570) Quantum optics : Quantum detectors
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Quantum Optics

History
Original Manuscript: February 17, 2011
Revised Manuscript: April 1, 2011
Manuscript Accepted: April 1, 2011
Published: April 28, 2011

Citation
Dmitry A. Kalashnikov, Si Hui Tan, Maria V. Chekhova, and Leonid A. Krivitsky, "Accessing photon bunching with a photon number resolving multi-pixel detector," Opt. Express 19, 9352-9363 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9352


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001). [CrossRef] [PubMed]
  2. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–175 (2007). [CrossRef]
  3. J. L. O’Brien, “Optical quantum computing,” Science 318(5856), 1567–1570 (2007). [CrossRef] [PubMed]
  4. P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429(6988), 158–161 (2004). [CrossRef] [PubMed]
  5. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429(6988), 161–164 (2004). [CrossRef] [PubMed]
  6. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68(5), 1129–1179 (2005). [CrossRef]
  7. S. Cova, A. Longoni, and A. Andreoni, “Towards picoseconds resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981). [CrossRef]
  8. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009). [CrossRef]
  9. S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high quantum-efficiency single-photon counting system,” Appl. Phys. Lett. 74(8), 1063–1065 (1999). [CrossRef]
  10. J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74(7), 902–904 (1999). [CrossRef]
  11. E. Waks, K. Inoue, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quant. 9(6), 1502–1511 (2003). [CrossRef]
  12. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735 (1998). [CrossRef]
  13. D. Rosemberg, A. E. Lita, A. J. Miller, and S. W. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71(6), 061803 (2005). [CrossRef]
  14. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008). [CrossRef] [PubMed]
  15. M. Bondani, A. Allevi, A. Agliati, and A. Andreoni, “Self-consistent characterization of light statistics,” J. Mod. Opt. 56(2), 226–231 (2009). [CrossRef]
  16. B. E. Kardynal, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2(7), 425–428 (2008). [CrossRef]
  17. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28(23), 2387–2389 (2003). [CrossRef] [PubMed]
  18. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68(4), 043814 (2003). [CrossRef]
  19. M. Mičuda, O. Haderka, and M. Ježek, “High-efficiency photon-number-resolving multichannel detector,” Phys. Rev. A 78(2), 025804 (2008). [CrossRef]
  20. Hamamatsu web-page http://jp.hamamatsu.com/ .
  21. K. Yamamoto, K. Yamamura, K. Sato, S. Kamakura, T. Ota, H. Suzuki, and S. Ohsuka, “Development of Multi-Pixel Photon Counter (MPPC),” Nuclear Science Symposium Conference Record, 2007. NSS ’07. IEEE 2, 1511–1515 (2007).
  22. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express 15(22), 14539–14549 (2007). [CrossRef] [PubMed]
  23. I. Afek, A. Natan, O. Ambar, and Y. Silberberg, “Quantum state measurements using multipixel photon detectors,” Phys. Rev. A 79(4), 043830 (2009). [CrossRef]
  24. I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, “Optical crosstalk in single photon avalanche diode arrays: a new complete model,” Opt. Express 16(12), 8381–8394 (2008). [CrossRef] [PubMed]
  25. M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B 27(5), 852–862 (2010). [CrossRef]
  26. D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, New York, 1988).
  27. M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, “Accessing higher order correlations in quantum optical states by time multiplexing,” Phys. Rev. Lett. 104(6), 063602 (2010). [CrossRef] [PubMed]
  28. O. Haderka, J. Perina, M. Hamar, and J. Perina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005). [CrossRef]
  29. J.-L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101(23), 233604 (2008). [CrossRef] [PubMed]
  30. H. Otono, S. Yamashita, T. Yoshioka, H. Oide, T. Suehiro, and H. Hano, “Study of MPPC at liquid nitrogen temperature,” Proceedings of International Workshop on New Photon-Detectors PD07 007 (2007).
  31. M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, “Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature,” Opt. Express 17(19), 16885–16897 (2009). [CrossRef] [PubMed]
  32. R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk Analsis of Integrated Geiger-mode Avalanche Photodiode Focal Plane Array,” Proc. SPIE 7320, 73200Q–73200Q-12 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited