OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9378–9384

Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition

Nicolaie Pavel, Masaki Tsunekane, and Takunori Taira  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9378-9384 (2011)
http://dx.doi.org/10.1364/OE.19.009378


View Full Text Article

Enhanced HTML    Acrobat PDF (956 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A passively Q-switched Nd:YAG/Cr4+:YAG micro-laser with three-beam output was realized. A single active laser source made of a composite, all-ceramics Nd:YAG/Cr4+:YAG monolithic cavity was pumped by three independent lines. At 5 Hz repetition rate, each line delivered laser pulses with ~2.4 mJ energy and 2.8-MW peak power. The M2 factor of a laser beam was 3.7, and stable air breakdowns were realized. The increase of pump repetition rate up to 100 Hz improved the laser pulse energy by 6% and required ~6% increase of the pump pulse energy. Pulse timing of the laser-array beams can by adjusted by less than 5% tuning of an individual line pump energy, and therefore simultaneous multi-point ignition is possible. This kind of laser can be used for multi-point ignition of an automobile engine.

© 2011 OSA

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 11, 2011
Revised Manuscript: April 20, 2011
Manuscript Accepted: April 21, 2011
Published: April 28, 2011

Citation
Nicolaie Pavel, Masaki Tsunekane, and Takunori Taira, "Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition," Opt. Express 19, 9378-9384 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9378


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998). [CrossRef]
  2. M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005). [CrossRef]
  3. M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15(7), 947–953 (2005).
  4. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007). [CrossRef]
  5. G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009). [CrossRef]
  6. M. Tsunekane, T. Inohara, A. Ando, K. Kanehara, and T. Taira, “High peak power, passively Q-switched Cr:YAG/Nd:YAG micro-laser for ignition of engines,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper MB4.
  7. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010). [CrossRef]
  8. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008). [CrossRef] [PubMed]
  9. T. X. Phuoc, “Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000). [CrossRef]
  10. M. H. Morsy, Y. S. Ko, S. H. Chung, and P. Cho, “Laser-induced two-point ignition of premixture with a single-shot laser,” Combust. Flame 124(4), 724–727 (2001). [CrossRef]
  11. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995). [CrossRef]
  12. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001). [CrossRef]
  13. S. T. Li, X. Y. Zhang, Q. P. Wang, P. Li, J. Chang, X. L. Zhang, and Z. H. Cong, “Modeling of Q-switched lasers with top-hat pump beam distribution,” Appl. Phys. B 88(2), 221–226 (2007). [CrossRef]
  14. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990). [CrossRef]
  15. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14(22), 10528–10536 (2006). [CrossRef] [PubMed]
  16. M. Tsunekane and T. Taira, “Temperature and polarization dependences of Cr:YAG transmission for passive Q-switching,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuD8.
  17. T. Dascalu and N. Pavel, “High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser,” Laser Phys. 19(11), 2090–2095 (2009). [CrossRef]
  18. N. Pavel, M. Tsunekane, and T. Taira, “Enhancing performances of a passively Q-switched Nd:YAG/Cr4+:YAG microlaser with a volume Bragg grating output coupler,” Opt. Lett. 35(10), 1617–1619 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited