OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9492–9504

Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films

Chia Min Chang, Cheng Hung Chu, Ming Lun Tseng, Hai-Pang Chiang, Masud Mansuripur, and Din Ping Tsai  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9492-9504 (2011)
http://dx.doi.org/10.1364/OE.19.009492


View Full Text Article

Enhanced HTML    Acrobat PDF (1748 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Amorphous thin films of Ge2Sb2Te5, sputter-deposited on a thin-film gold electrode, are investigated for the purpose of understanding the local electrical conductivity of recorded marks under the influence of focused laser beam. Being amorphous, the as-deposited chalcogenide films have negligible electrical conductivity. With the aid of a focused laser beam, however, we have written on these films micron-sized crystalline marks, ablated holes surrounded by crystalline rings, and other multi-ring structures containing both amorphous and crystalline zones. Within these structures, nano-scale regions of superior local conductivity have been mapped and probed using our high-resolution, high-sensitivity conductive-tip atomic force microscope (C-AFM). Scanning electron microscopy and energy-dispersive spectrometry have also been used to clarify the origins of high conductivity in and around the recorded marks. When the Ge2Sb2Te5 layer is sufficiently thin, and when laser crystallization/ablation is used to define long isolated crystalline stripes on the samples, we find the C-AFM-based method of extracting information from the recorded marks to be superior to other forms of microscopy for this particular class of materials. Given the tremendous potential of chalcogenides as the leading media candidates for high-density memories, local electrical characterization of marks recorded on as-deposited amorphous Ge2Sb2Te5 films provides useful information for furthering research and development efforts in this important area of modern technology.

© 2011 OSA

OCIS Codes
(210.4770) Optical data storage : Optical recording
(210.4810) Optical data storage : Optical storage-recording materials
(310.3840) Thin films : Materials and process characterization

ToC Category:
Optical Data Storage

History
Original Manuscript: April 1, 2011
Revised Manuscript: April 28, 2011
Manuscript Accepted: April 28, 2011
Published: April 29, 2011

Citation
Chia Min Chang, Cheng Hung Chu, Ming Lun Tseng, Hai-Pang Chiang, Masud Mansuripur, and Din Ping Tsai, "Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films," Opt. Express 19, 9492-9504 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9492


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968). [CrossRef]
  2. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991). [CrossRef]
  3. J. H. Coombs, A. Jongenelis, W. Vanesspiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. 1. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995). [CrossRef]
  4. I. Satoh, S. Ohara, N. Akahira, and M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34(2), 337–342 (1998). [CrossRef]
  5. T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998). [CrossRef]
  6. T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000). [CrossRef]
  7. L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000). [CrossRef]
  8. H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001). [CrossRef]
  9. T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).
  10. J. M. Li, L. P. Shi, X. S. Miao, K. G. Lim, P. K. Tan, H. Meng, and T. C. Chong, “Surface roughening of recording media and readout performance of phase-change optical disk,” J. Appl. Phys. 93(1), 14–18 (2003). [CrossRef]
  11. W. D. Song, L. P. Shi, X. S. Miao, and T. C. Chong, “Phase change behaviors of Sn-doped Ge-Sb-Te material,” Appl. Phys. Lett. 90(9), 091904 (2007). [CrossRef]
  12. J. Robertson, K. Xiong, and P. W. Peacock, “Electronic and atomic structure of Ge2Sb2Te5 phase change memory material,” Thin Solid Films 515(19), 7538–7541 (2007). [CrossRef]
  13. J. Hegedüs and S. R. Elliott, “Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials,” Nat. Mater. 7(5), 399–405 (2008). [CrossRef] [PubMed]
  14. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008). [CrossRef] [PubMed]
  15. K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008). [CrossRef] [PubMed]
  16. F. X. Zhai, F. Y. Zuo, H. Huang, Y. Wang, T. S. Lai, Y. Q. Wu, and F. X. Gan, “Optical-electrical properties of AgInSbTe phase change thin films under single picosecond laser pulse irradiation,” J. Non-Cryst. Solids 356(18-19), 889–892 (2010). [CrossRef]
  17. K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003). [CrossRef]
  18. A. Redaelli, A. Pirovano, E. Pellizzer, A. L. Lacaita, D. Ielmini, and R. Bez, “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE Electron Device Lett. 25(10), 684–686 (2004). [CrossRef]
  19. A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004). [CrossRef]
  20. M. H. R. Lankhorst, B. W. Ketelaars, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4(4), 347–352 (2005). [CrossRef] [PubMed]
  21. H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006). [CrossRef] [PubMed]
  22. R. E. Simpson, A. Mairaj, R. J. Curry, C. C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga: La: S: Cu films,” Electron. Lett. 43(15), 830–832 (2007). [CrossRef]
  23. S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol. 2(10), 626–630 (2007). [CrossRef]
  24. K. Nakayama, M. Takata, T. Kasai, A. Kitagawa, and J. Akita, “Pulse number control of electrical resistance for multi-level storage based on phase change,” J. Phys. D Appl. Phys. 40(17), 5061–5065 (2007). [CrossRef]
  25. Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett. 8(7), 2056–2062 (2008). [CrossRef] [PubMed]
  26. M. Terao, T. Morikawa, and T. Ohta, “Electrical phase-change memory: fundamentals and state of the art,” Jpn. J. Appl. Phys. 48(8), 080001 (2009). [CrossRef]
  27. R. Fallica, J. L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, “Thermal and electrical characterization of materials for phase-change memory cells,” J. Chem. Eng. Data 54(6), 1698–1701 (2009). [CrossRef]
  28. Y. Yin, T. Noguchi, H. Ohno, and S. Hosaka, “Programming margin enlargement by material engineering for multilevel storage in phase-change memory,” Appl. Phys. Lett. 95(13), 133503 (2009). [CrossRef]
  29. R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5).,” Nano Lett. 10(2), 414–419 (2010). [CrossRef] [PubMed]
  30. F. X. Zhai, H. Huang, Y. Wang, Y. Q. Wu, and F. X. Gan, “Optical-electrical hybrid operation with amorphous Ge1Sb4Te7 phase change thin films,” Appl. Phys., A Mater. Sci. Process. 98(4), 795–800 (2010). [CrossRef]
  31. L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, J. J. Ho, and Y. J. Wu, “Study of the multi-level reflection modulation recording for phase change optical disks,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 733–736 (2000). [CrossRef]
  32. Y. F. Lai, J. Feng, B. W. Qiao, Y. F. Cai, Y. Y. Lin, T. A. Tang, B. C. Cai, and B. Chen, “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 21–25 (2006). [CrossRef]
  33. L. C. Wu, Z. T. Song, F. Rao, Y. F. Gong, and S. L. Feng, “Multistate storage through successive phase change and resistive change,” Appl. Phys. Lett. 94(24), 243115 (2009). [CrossRef]
  34. D. P. Tsai and W. R. Guo, “Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable,” J. Vac. Sci. Technol. A 15(3), 1442–1445 (1997). [CrossRef]
  35. T. Gotoh, K. Sugawara, and K. Tanaka, “Nanoscale electrical phase-change in GeSb2Te4 films with scanning probe microscopes,” J. Non-Cryst. Solids 299-302, 968–972 (2002). [CrossRef]
  36. S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006). [CrossRef]
  37. S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006). [CrossRef] [PubMed]
  38. S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006). [CrossRef]
  39. S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007). [CrossRef]
  40. B. J. Bae, S. H. Hong, S. Y. Hwang, J. Y. Hwang, K. Y. Yang, and H. Lee, “Electrical characterization of Ge-Sb-Te phase change nano-pillars using conductive atomic force microscopy,” Semicond. Sci. Technol. 24(7), 075016 (2009). [CrossRef]
  41. C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009). [CrossRef]
  42. C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited