OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9505–9511

Stripe-like quasi-nondiffracting optical lattices

Yaroslav V. Kartashov, Servando López-Aguayo, Victor A. Vysloukh, and Lluis Torner  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9505-9511 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3358 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce stripe-like quasi-nondiffracting lattices that can be generated via spatial spectrum engineering. The complexity of the spatial shapes of such lattices and the distance of their almost diffractionless propagation depend on the width of their ring-like spatial spectrum. Stripe-like lattices are extended in one direction and are localized in the orthogonal one, thereby creating either straight or curved in any desired fashion optically-induced channels that may be used for optical trapping, optical manipulation, or optical lattices for quantum and nonlinear optics applications. As an illustrative example, here we show their potential for spatial soliton control. Complex networks consisting of several intersecting or joining stripe-like lattices suited to a particular application may also be constructed.

© 2011 OSA

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Physical Optics

Original Manuscript: April 4, 2011
Revised Manuscript: April 27, 2011
Manuscript Accepted: April 27, 2011
Published: April 29, 2011

Yaroslav V. Kartashov, Servando López-Aguayo, Victor A. Vysloukh, and Lluis Torner, "Stripe-like quasi-nondiffracting optical lattices," Opt. Express 19, 9505-9511 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, ““Light beats the spread: “non-diffracting” beams,” Laser Photonics Rev. 4(4), 529–547 (2010). [CrossRef]
  2. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  3. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, G. A. Ramirez, E. Tepichin, R. M. Rodriguez-Dagnino, S. Chavez-Cerda, and G. H. C. New, “Experimental demonstration of optical Mathieu beams,” Opt. Commun. 195(1–4), 35–40 (2001). [CrossRef]
  4. C. López-Mariscal, M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Observation of parabolic nondiffracting optical fields,” Opt. Express 13(7), 2364–2369 (2005). [CrossRef] [PubMed]
  5. S. López-Aguayo, Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Method to generate complex quasinondiffracting optical lattices,” Phys. Rev. Lett. 105(1), 013902 (2010). [CrossRef] [PubMed]
  6. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  7. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90(2), 023902 (2003). [CrossRef] [PubMed]
  8. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003). [CrossRef] [PubMed]
  9. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28(9), 710–712 (2003). [CrossRef] [PubMed]
  10. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92(12), 123902 (2004). [CrossRef] [PubMed]
  11. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1–3), 1–126 (2008). [CrossRef]
  12. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton shape and mobility control in optical lattices,” Prog. Opt. 52, 63–148 (2009). [CrossRef]
  13. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Rotary solitons in bessel optical lattices,” Phys. Rev. Lett. 93(9), 093904 (2004). [CrossRef] [PubMed]
  14. X. Wang, Z. Chen, and P. G. Kevrekidis, “Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices,” Phys. Rev. Lett. 96(8), 083904 (2006). [CrossRef] [PubMed]
  15. R. Fischer, D. N. Neshev, S. Lopez-Aguayo, A. S. Desyatnikov, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Observation of light localization in modulated Bessel optical lattices,” Opt. Express 14(7), 2825–2830 (2006). [CrossRef] [PubMed]
  16. Y. V. Kartashov, A. A. Egorov, V. A. Vysloukh, and L. Torner, “Shaping soliton properties in Mathieu lattices,” Opt. Lett. 31(2), 238–240 (2006). [CrossRef] [PubMed]
  17. F. Ye, D. Mihalache, and B. Hu, “Elliptic vortices in composite Mathieu lattices,” Phys. Rev. A 79(5), 053852 (2009). [CrossRef]
  18. Y. V. Kartashov, V. V. Vysloukh, and L. Torner, “Highly asymmetric soliton complexes in parabolic optical lattices,” Opt. Lett. 33(2), 141–143 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited