OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9512–9522

Optimal design of SPP-based metallic nanoaperture optical elements by using Yang-Gu algorithm

Qiaofen Zhu, Jiasheng Ye, Dayong Wang, Benyuan Gu, and Yan Zhang  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9512-9522 (2011)
http://dx.doi.org/10.1364/OE.19.009512


View Full Text Article

Enhanced HTML    Acrobat PDF (1885 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optimization method for design of SPP-based metallic nanoaperture optical elements is presented. The design process is separated into two steps: Firstly, derive the amplitude and phase modulation of isolating single slit with different width; Secondly, realize the optimal design of element by using an iteration procedure. The Yang-Gu algorithm is expanded to perform this design. Three kinds of lenses which can achieve various functions have been designed by using this method. The rigorous electromagnetical theory is employed to justify and appraise the performances of the designed elements. It has been found that the designed elements can achieve the preset functions well. This method may provide a convenient avenue to optimally design metallic diffractive optical elements with subwavelength scale.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 31, 2011
Revised Manuscript: March 23, 2011
Manuscript Accepted: April 8, 2011
Published: May 2, 2011

Citation
Qiaofen Zhu, Jiasheng Ye, Dayong Wang, Benyuan Gu, and Yan Zhang, "Optimal design of SPP-based metallic nanoaperture optical elements by using Yang-Gu algorithm," Opt. Express 19, 9512-9522 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9512


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957). [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Merono, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef] [PubMed]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  5. P. B. Catrysse, “Beaming light into the nanoworld,” Nat. Phys. 3, 839–840 (2007). [CrossRef]
  6. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyonds the diffractin limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  7. A. G. Curto, A. Manjavacas, and F. J. García de Abajo, “Near-field focusing with optical phase antennas,” Opt. Express 17, 17801–17811 (2009). [CrossRef] [PubMed]
  8. I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-clab optical waveguides: analytical and experimental study,” Appl. Opt. 13, 396–405 (1974). [CrossRef] [PubMed]
  9. H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q. Park, “Control of surface plamson generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008). [CrossRef]
  10. J. Lindberg, K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, “Spectral analysis of resonant transmission of light through a single sub-wavelength slit,” Opt. Express 12, 623–632 (2004). [CrossRef] [PubMed]
  11. P. Lalanne, J. P. Hugonin, S. Astillean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48–51 (2000). [CrossRef]
  12. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  13. Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642–644 (2004). [CrossRef]
  14. T. Xu, C. T. Wang, C. L. Du, and X. G. Luo, “Plasmonic beam deflector,” Opt. Express 16, 4753–4759 (2008). [CrossRef] [PubMed]
  15. Z. J. Sun, “Beam splitting with a modified metallic nano-optic lens,” Appl. Phys. Lett. 89, 261119 (2006). [CrossRef]
  16. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815–6820 (2005). [CrossRef] [PubMed]
  17. L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009). [CrossRef]
  18. W. M. Saj, “Light focusing on a stack of metal-insulator-metal waveguides sharp edges,” Opt. Express 17, 13615–13623 (2009). [CrossRef] [PubMed]
  19. G. Z. Yang and B. Y. Gu, “On the amplitude-phase retrieval problem in optical system,” Acta Phys. Sin. 30, 410–413 (1981).
  20. B. Y. Gu, G. Z. Yang, and B. Z. Dong, “General theory for performing an optical transform,” Appl. Opt. 25, 3197–3206 (1986). [CrossRef] [PubMed]
  21. T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91, 201501 (2007).
  22. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005). [CrossRef]
  23. B. Hu, B. Y. Gu, B. Z. Dong, Y. Zhang, and M. Liu, “Various evaluations of a diffractive transmitted field of light through a one-dimensional metallic grating with subwavelength slits,” Cent. Eur. J. Phys. 8, 448–454 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited