OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9535–9540

In situ control and monitoring of photonic device intermixing during laser irradiation

C. K. Chia, M. Suryana, and M. Hopkinson  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9535-9540 (2011)
http://dx.doi.org/10.1364/OE.19.009535


View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Apparatus and method for the in situ control of photonic device intermixing processes are described. The setup utilises an optical fiber splitter which delivers photons to selectively anneal the photonic device and simultaneously measures the emission spectra from the device to monitor the intermixing process in real time. The in situ monitoring of a laser annealing process for the modification of a semiconductor laser diode facet is demonstrated using the instrumentation. A progressive blueshift in the emission wavelength of the device can clearly be observed in real time while high energy photons are delivered to anneal the device facet, hence enabling the control on the degree of intermixing required. This instrumentation is also ideal for broadening of emission spectra in quantum dot and quantum well based light emitting devices such as superluminescent diodes and broadband laser.

© 2011 OSA

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.3390) Lasers and laser optics : Laser materials processing
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.3670) Optical devices : Light-emitting diodes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.7370) Optical devices : Waveguides

ToC Category:
Laser Microfabrication

History
Original Manuscript: February 16, 2011
Revised Manuscript: April 1, 2011
Manuscript Accepted: April 6, 2011
Published: May 2, 2011

Citation
C. K. Chia, M. Suryana, and M. Hopkinson, "In situ control and monitoring of photonic device intermixing during laser irradiation," Opt. Express 19, 9535-9540 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9535


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. W. Boyd and J. I. B. Wilson, “Laser annealing for semiconductor devices,” Nature 287(5780), 278 (1980). [CrossRef]
  2. C. K. Chia, S. J. Chua, S. Tripathy, and J. R. Dong, “Group-V intermixing in InAs/InP quantum dots,” Appl. Phys. Lett. 86(5), 051905 (2005). [CrossRef]
  3. C. K. Chia, S. J. Chua, J. R. Dong, and S. L. Teo, “Ultrawide band quantum dot light emitting device by postfabrication laser annealing,” Appl. Phys. Lett. 90(6), 061101 (2007). [CrossRef]
  4. D. G. Deppe and N. Holonyak., “Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64(12), R93–R113 (1988). [CrossRef]
  5. W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. K. Kapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981). [CrossRef]
  6. H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” IEEE J. Quantum Electron. 40(2), 166–174 (2004). [CrossRef]
  7. S. Barik, H. H. Tan, and C. Jagadish, “High temperature rapid thermal annealing of phosphorous ion implanted InAs/InP quantum dots,” Appl. Phys. Lett. 90(9), 093106 (2007). [CrossRef]
  8. S. Barik, L. Fu, H. H. Tan, and C. Jagadish, “Impurity-free disordering of InAs/InP quantum dots,” Appl. Phys. Lett. 90(24), 243114 (2007). [CrossRef]
  9. H. S. Djie, B. S. Ooi, and O. Gunawan, “Quantum dot intermixing using excimer laser irradiation,” Appl. Phys. Lett. 89(8), 081901 (2006). [CrossRef]
  10. J. H. Lee, A. G. Choo, W. T. Lee, J. S. Yu, G. G. Park, and T. I. Kim, “Enhanced COD of pump laser diode by laser annealing of the facet,” The 4th IEEE International Conference on VLSI and CAD, ICVC’95, October 15–18, 1995, Seoul, Korea (IEEE, New York, 1995), pp. 337–339.
  11. B. C. Qiu, A. C. Bryce, R. M. De La Rue, and J. H. Marsh, “Monolithic integration in InGaAs–InGaAsP multiquantum-well structure using laser processing,” IEEE Photon. Technol. Lett. 10(6), 769–771 (1998). [CrossRef]
  12. C. K. Chia, M. Suryana, and M. Hopkinson, “Thermal runaway and optical efficiency in InAs/GaAs quantum dot lasers,” Appl. Phys. Lett. 95(14), 141106 (2009). [CrossRef]
  13. C. L. Walker, A. C. Bryce, and J. H. Marsh, “Improved catastrophic optical damage level from laser with nonabsorbing mirrors,” IEEE Photon. Technol. Lett. 14(10), 1394–1396 (2002). [CrossRef]
  14. Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett. 33(11), 1210–1212 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-7055 . [CrossRef] [PubMed]
  15. Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express 18(7), 7055–7063 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-7055 . [CrossRef] [PubMed]
  16. X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang, “Broadband external cavity tunable quantum dot lasers with low injection current density,” Opt. Express 18(9), 8916–8922 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-8916 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited