OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9582–9593

Measuring the feedback parameter of a semiconductor laser with external optical feedback

Yanguang Yu, Jiangtao Xi, and Joe F. Chicharo  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9582-9593 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1382 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Feedback parameter (the C factor) is an important parameter for a semiconductor laser operating in the regime of external optical feedback. Self-mixing interferometry (SMI) has been proposed for the measurement of the parameter, based on the time-domain analysis of the output power waveforms (called SMI signals) in presence of feedback. However, the existing approaches only work for a limited range of C, below about 3.5. This paper presents a new method to measure C based on analysis of the phase signal of SMI signals in the frequency domain. The proposed method covers a large range of C values, up to about 10. Simulations and experimental results are presented for verification of the proposed method.

© 2011 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.5960) Lasers and laser optics : Semiconductor lasers
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 18, 2011
Revised Manuscript: April 24, 2011
Manuscript Accepted: April 26, 2011
Published: May 2, 2011

Yanguang Yu, Jiangtao Xi, and Joe F. Chicharo, "Measuring the feedback parameter of a semiconductor laser with external optical feedback," Opt. Express 19, 9582-9593 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004). [CrossRef]
  2. S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995). [CrossRef]
  3. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004). [CrossRef]
  4. N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998). [CrossRef]
  5. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002). [CrossRef]
  6. J. Xi, Y. Yu, J. F. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41(8), 1058–1064 (2005). [CrossRef]
  7. Y. Yu, J. Xi, J. F. Chicharo, and T. Bosch, “Toward automatic measurement of the linewidth-enhancement factor using optical feedback self-mixing interferometry with weak optical feedback,” IEEE J. Quantum Electron. 43(7), 527–534 (2007). [CrossRef]
  8. Y. Yu, J. Xi, J. F. Chicharo, and T. M. Bosch, “Optical feedback self-mixing interferometry with a large feedback factor C: behavior studies,” IEEE J. Quantum Electron. 45(7), 840–848 (2009). [CrossRef]
  9. Y. Fan, Y. Yu, J. Xi, J. Chicharo, and H. Ye, “A displacement reconstruction algorithm used for optical feedback self mixing interferometry system under different feedback levels,” Proc. SPIE 7855, 78550L, 78550L-7 (2010). [CrossRef]
  10. Y. Yu, J. Xi, and J. F. Chicharo, “Improving the Performance in an Optical feedback Self-mixing Interferometry System using Digital Signal Pre-processing,” in Proceedings of IEEE Conference on Intelligent Signal Processing (Institute of Electrical and Electronic Engineers, Alcala de Henares, 2007), pp. 1–6.
  11. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980). [CrossRef]
  12. G. Acket, D. Lenstra, A. Den Boef, and B. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20(10), 1163–1169 (1984). [CrossRef]
  13. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995). [CrossRef]
  14. M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987). [CrossRef]
  15. D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, “Linewidth and alpha-factor in AlGaAs/GaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66(3), 277–279 (1995). [CrossRef]
  16. Y. Arakawa and A. Yariv, “Fermi energy dependence of linewidth enhancement factor of GaAlAs buried heterostructure lasers,” Appl. Phys. Lett. 47(9), 905–907 (1985). [CrossRef]
  17. L. Hua, “RF-modulation measurement of linewidth enhancement factor and nonlinear gain of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 8(12), 1594–1596 (1996). [CrossRef]
  18. H. Halbritter, F. Riemenschneider, J. Jacquet, J. G. Provost, C. Symonds, I. Sagnes, and P. Meissner, “Chirp and linewidth enhancement factor of tunable, optically-pumped long wavelength VCSEL,” Electron. Lett. 40(4), 242–244 (2004). [CrossRef]
  19. H. Nakajima and J. C. Bouley, “Observation of power dependent linewidth enhancement factor in 1.55 mu m strained quantum well lasers,” Electron. Lett. 27(20), 1840–1841 (1991). [CrossRef]
  20. G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001). [CrossRef]
  21. W.-H. Seo and J. F. Donegan, “Linewidth enhancement factor of lattice-matched InGaNAs/GaAs quantum wells,” Appl. Phys. Lett. 82(4), 505–507 (2003). [CrossRef]
  22. C. H. Shin, M. Teshima, and M. Ohtsu, “Novel measurement method of linewidth enhancement factor in semiconductor lasers by optical self-locking,” Electron. Lett. 25(1), 27–28 (1989). [CrossRef]
  23. Y. S. Shin, T. H. Yoon, J. R. Park, and C. H. Nam, “Simple methods for measuring the linewidth enhancement factor in external cavity laser diodes,” Opt. Commun. 173(1–6), 303–309 (2000). [CrossRef]
  24. D. Fye, “Relationship between carrier-induced index change and feedback noise in diode lasers,” IEEE J. Quantum Electron. 18(10), 1675–1678 (1982). [CrossRef]
  25. T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43(1), 6–15 (2007). [CrossRef]
  26. T. Fordell and A. M. Lindberg, “Noise correlation, regenerative amplification, and the linewidth enhancement factor of a vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(9), 667–669 (2008). [CrossRef]
  27. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988). [CrossRef]
  28. H. Olesen, J. Osmundsen, and B. Tromborg, “Nonlinear dynamics and spectral behavior for an external cavity laser,” IEEE J. Quantum Electron. 22(6), 762–773 (1986). [CrossRef]
  29. V. Annovazzi-Lodi, S. Merlo, M. Norgia, and A. Scire, “Characterization of a chaotic telecommunication laser for different fiber cavity lengths,” IEEE J. Quantum Electron. 38(9), 1171–1177 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited