OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9607–9616

Optical properties of a fabricated self-assembled bottom-up bulk metamaterial

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9607-9616 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3403 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the optical properties of a true three-dimensional metamaterial that was fabricated using a self-assembly bottom-up technology. The metamaterial consists of closely packed spherical clusters being formed by a large number of non-touching gold nanoparticles. After presenting experimental results, we apply a generalized Mie theory to analyze its spectral response revealing that it is dominated by a magnetic dipole contribution. By using an effective medium theory we show that the fabricated metamaterial exhibits a dispersive effective permeability, i.e. artificial magnetism. Although this metamaterial is not yet left-handed it might serve as a starting point for achieving bulk metamaterials by using bottom-up approaches.

© 2011 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(290.4210) Scattering : Multiple scattering
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: February 8, 2011
Revised Manuscript: March 25, 2011
Manuscript Accepted: April 4, 2011
Published: May 3, 2011

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, "Optical properties of a fabricated self-assembled bottom-up bulk metamaterial," Opt. Express 19, 9607-9616 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  2. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Mater. 7, 31–37 (2008). [CrossRef]
  3. T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Anomalous refraction, diffraction, and imaging in metamaterials,” Phys. Rev. B 79, 115430 (2009). [CrossRef]
  4. D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with a SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010). [CrossRef]
  5. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010). [CrossRef] [PubMed]
  6. C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010). [CrossRef]
  7. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007). [CrossRef] [PubMed]
  8. C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79, 045111 (2009). [CrossRef]
  9. A. Vallecchi, M. Albani, and F. Capolino, “Collective electric and magnetic plasmonic resonances in spherical nanoclusters,” Opt. Express 19, 2754–2772 (2011). [CrossRef] [PubMed]
  10. V. Yannopapas, “Subwavelength imaging of light by arrays of metal-coated semiconductor nanoparticles: a theoretical study,” J. Phys.: Condens. Matter 20, 255201 (2008). [CrossRef]
  11. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005). [CrossRef]
  12. M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79, 073103 (2009). [CrossRef]
  13. V. Yannopapas, “Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies,” Appl. Phys. A 87, 259–264 (2007). [CrossRef]
  14. V. A. Tamma, J.-H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt. 49, A11–A17 (2010). [CrossRef] [PubMed]
  15. J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, and C. J. Hawker, “Block copolymer nanolithography: translation of molecular level control to nanoscale patterns,” Adv. Mater. 21, 4769–4792 (2009). [CrossRef]
  16. H. Fan, “Nanocrystal-micelle: synthesis, self-assembly and application,” Chem. Commun. , 1383–1394 (2008). [CrossRef]
  17. S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, T. Bürgi, and R. Deschenaux, “Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles,” Helv. Chim. Acta 91, 2321–2337 (2008). [CrossRef]
  18. P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and patterns,” Nature 440, 297–302 (2006). [CrossRef] [PubMed]
  19. C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009). [CrossRef]
  20. V. Yannopapas, “Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres,” Phys. Rev. B 75, 035112 (2007). [CrossRef]
  21. N. Shalkevich, A. Shalkevich, L. Si-Ahmed, and T. Bürgi, “Reversible formation of gold nanoparticle–surfactant composite assemblies for the preparation of concentrated colloidal solutions,” Phys. Chem. Chem. Phys. 11, 10175–10179 (2009). [CrossRef] [PubMed]
  22. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature (London), Phys. Sci. 241, 20–22 (1973).
  23. Y.-l. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995). [CrossRef] [PubMed]
  24. S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three–dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010). [CrossRef]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  26. T. Okamoto, “Near-field spectral analysis of metallic beads,” in Near-Field Optics and Surface Plasmon Polaritons , S. Kawata, ed. (Springer, 2001), pp. 97–123. [CrossRef]
  27. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005). [CrossRef]
  28. J. D. Jackson, “Radiating systems, multipole fields and radiation,” in Classical Electrodynamics , 3rd ed. (Wiley, 1999), pp. 407–455.
  29. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
  30. H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited