OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9617–9625

Tunable Fabry-Perot filter using hollow-core photonic bandgap fiber and micro-fiber for a narrow-linewidth laser

Xiaozhen Wang, Tao Zhu, Liang Chen, and Xiaoyi Bao  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9617-9625 (2011)
http://dx.doi.org/10.1364/OE.19.009617


View Full Text Article

Enhanced HTML    Acrobat PDF (1613 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel tunable fiber Fabry-Perot (FP) filter is proposed and demonstrated by using a hollow-core photonic bandgap fiber (HC-PBF) and a micro-fiber. The interference cavity is a hollow core of HC-PBF. One of the reflection mirrors is the splicing point between a section of HC-PBF and a single mode fiber. The other reflection mirror is a gold-coated end of micro-fiber that uses chemical etching process to obtain the similar diameter as the core of HC-PBF. Hence the movable mirror can be adjusted with long distance inside the hollow core of HC-PBF. Tunable FP filter is used as a mode selecting component in the reflection mode to implement stable single longitudinal mode (SLM) operation in a ring laser. With FP cavity length of 0.25 ± 0.14 mm, the wavelength of SLM laser can be tuned over 1554-1562 nm with a tuning step of 0.2-0.3 nm, a side-mode suppression ratio (SMSR) of 32-36 dB and a linewidth of 3.0-5.1 kHz. With FP cavity length of 2.37 ± 0.37 mm, the SLM laser can be tuned over 1557.3-1560.2 nm with a tuning step of 0.06-0.1 nm, a SMSR of 44-51 dB and a linewidth of 1.8-3.0 kHz.

© 2011 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 8, 2011
Revised Manuscript: April 8, 2011
Manuscript Accepted: April 11, 2011
Published: May 3, 2011

Citation
Xiaozhen Wang, Tao Zhu, Liang Chen, and Xiaoyi Bao, "Tunable Fabry-Perot filter using hollow-core photonic bandgap fiber and micro-fiber for a narrow-linewidth laser," Opt. Express 19, 9617-9625 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9617


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. F. Taylor, “Fiber optic Fabry-Perot sensors,” in Fiber Optic Sensors, F. T. Y. Yu, ed., Marcel Dekker, New York, 41–74 (2002).
  2. H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15(4), 647–653 (1997). [CrossRef]
  3. Y. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005). [CrossRef]
  4. T. K. Gangopadhyay and P. J. Henderson, “Vibration: history and measurement with an extrinsic Fabry-Perot sensor with solid-state laser interferometry,” Appl. Opt. 38(12), 2471–2477 (1999). [CrossRef]
  5. Z. Huang, Y. Zhu, X. Chen, and A. B. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17(11), 2403–2405 (2005). [CrossRef]
  6. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009). [CrossRef] [PubMed]
  7. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007). [CrossRef] [PubMed]
  8. Y. J. Rao, M. Deng, T. Zhu, and H. Li, “In-Line Fabry–Perot Etalons Based on Hollow-Core Photonic Bandgap Fibers for High-Temperature Applications,” J. Lightwave Technol. 27(19), 4360–4365 (2009). [CrossRef]
  9. X. W. Wang, J. Ch. Xu, Zh. Wang, K. L. Cooper, and A. B. Wang, “Intrinsic Fabry-Perot interferometer with a micrometric tip for biomedical applications,” in Proceedings of the IEEE 32nd Annual Northeast on Bioengineering Conference 2006, 55–56 (2006).
  10. C. C. Lee, Y. K. Chen, and S. K. Liaw, “Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission,” Opt. Lett. 23(5), 358–360 (1998). [CrossRef]
  11. C. H. Yeh, T. T. Huang, H. C. Chien, C. H. Ko, and S. Chi, “Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation,” Opt. Express 15(2), 382–386 (2007). [CrossRef] [PubMed]
  12. S. L. Pan and J. P. Yao, “A wavelength-tunable single-longitudinal-mode fiber ring laser with a large sidemode suppression and improved stability,” IEEE Photon. Technol. Lett. 22(6), 413–415 (2010). [CrossRef]
  13. Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and W. J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001). [CrossRef]
  14. J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004). [CrossRef]
  15. K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinalmode erbium-doped fiber ring laser,” Opt. Express 16(18), 14173–14179 (2008). [CrossRef] [PubMed]
  16. M. Tang, X. Tian, X. Lu, S. Fu, P. P. Shum, Z. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009). [CrossRef] [PubMed]
  17. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008). [CrossRef]
  18. D. Chen, H. Fu, and W. Liu, “Single-longitudinal-mode erbium-doped fiber laser based on a fiber Bragg grating Fabry-Perot filter,” Laser Phys. 17(10), 1246–1248 (2007). [CrossRef]
  19. L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32(2), 115–117 (2007). [CrossRef]
  20. Datasheet of HC-1550, http://www.nktphotonics.com/files/files/HC-1550-02-100409.pdf .
  21. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, New Jersey, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited