OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9737–9743

Fast saturable absorption and 10 GHz wavelength conversion in Al-quaternary multiple quantum wells

Richard P. Green, Mohsin Haji, Lianping Hou, Gabor Mezosi, Rafal Dylewicz, and Anthony E. Kelly  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9737-9743 (2011)
http://dx.doi.org/10.1364/OE.19.009737


View Full Text Article

Enhanced HTML    Acrobat PDF (743 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We measured the absorption recovery times in reverse biased AlInGaAs multiple quantum well material designed to emit at around 1.5 μm wavelength. Absorption recovery times as low as 2.5ps were found at −4V bias, with values below 5ps consistently found for biases above 3V. The short absorption recovery times obtained under reverse bias were confirmed by using cross-absorption modulation in the material to demonstrate wavelength conversion of a 10GHz pulse train, showing both up and down conversion of the incident pulses.

© 2011 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(320.5390) Ultrafast optics : Picosecond phenomena
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Optical Devices

History
Original Manuscript: January 7, 2011
Revised Manuscript: April 1, 2011
Manuscript Accepted: April 5, 2011
Published: May 4, 2011

Citation
Richard P. Green, Mohsin Haji, Lianping Hou, Gabor Mezosi, Rafal Dylewicz, and Anthony E. Kelly, "Fast saturable absorption and 10 GHz wavelength conversion in Al-quaternary multiple quantum wells," Opt. Express 19, 9737-9743 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9737


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004). [CrossRef]
  2. U. Keller, “Recent developments in compact ultrafast lasers,” Nature (London) 424, 831–838 (2003). [CrossRef]
  3. L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. Ironside, M. Sorel, and A. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs-InP 1.55μm strained quantum-well laser,” IEEE Photon. Technol. Lett. 21, 1731–1733 (2009). [CrossRef]
  4. K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11, 278–284 (2005). [CrossRef]
  5. J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64, 676–678 (1994). [CrossRef]
  6. E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998). [CrossRef]
  7. R. Takahashi, “Low-temperature-grown surface-reflection all-optical switch (LOTOS),” Opt. Quantum Electron. 33, 999 (2001). [CrossRef]
  8. C. V.-B. Grimm, M. Priegnitz, S. Winnerl, H. Schneider, M. Helm, K. Biermann, and H. Künzel, “Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAs/AlAs/AlAsSb,” Appl. Phys. Lett. 91, 191121 (2007).
  9. D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett. 89, 171111 (2006). [CrossRef]
  10. C.-C. Lin, K.-S. Liu, M.-C. Wu, and H.-P. Shiao, “Low threshold current and high temperature operation of 1.55 μm strain-compensated multiple quantum well AlInAs/AlGaInAs laser diodes,” Electron. Lett. 34, 1667–1668 (1998). [CrossRef]
  11. S. Sayid, I. Marko, P. Cannard, X. Chen, L. Rivers, I. Lealman, and S. Sweeney, “Thermal characteristics of 1.55 μm InGaAlAs quantum well buried heterostructure lasers,” IEEE J. Quantum Electron. 46, 700–705 (2010). [CrossRef]
  12. L. Hou, M. Haji, R. Dylewicz, P. Stolarz, B. Qiu, E. A. Avrutin, and A. C. Bryce, “160 GHz harmonic mode-locked AlGaInAs 1.55μm strained quantum-well compound-cavity laser,” Opt. Lett. 35, 3991–3993 (2010). [CrossRef] [PubMed]
  13. L. Hou, M. Haji, R. Dylewicz, B. Qiu, and A. C. Bryce, “Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology,” IEEE Photon. Technol. Lett. 22, 1039–1041 (2010). [CrossRef]
  14. L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs -InP 1.55-μm MQW laser with surface-etched distributed bragg reflector,” IEEE Photon. Technol. Lett. 22, 1503–1505 (2010). [CrossRef]
  15. R. P. Green, A. Tredicucci, N. Q. Vinh, B. Murdin, C. Pidgeon, H. E. Beere, and D. A. Ritchie, “Gain recovery dynamics of a terahertz quantum cascade laser,” Phys. Rev. B 80, 075303 (2009). [CrossRef]
  16. H. Schneider and K. v. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1−xAs multiple-quantum-well structure,” Phys. Rev. B 38, 6160–6165 (1988). [CrossRef]
  17. K. Nishimura and M. Usami, “Optical wavelength conversion by electro-absorption modulators,” Active and Passive Optical Components for WDM Communications IV, Proc. SPIE 5595, 234–243 (2004).
  18. J. Javaloyes and S. Balle, “Mode-locking in semiconductor Fabry-Pérot lasers,” IEEE J. Quantum Electron. 46, 1023–1030 (2010). [CrossRef]
  19. N. El Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B. Benkelfat, and A. Ramdane, “New design of InGaAs-InGaAlAs MQW electroabsorption modulator for high speed all-optical wavelength conversion” IEEE Photon. Technol. Lett. 16, 2302–2304 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited