OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9759–9769

Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal

Yongkang Gong, Xueming Liu, Leiran Wang, Hua Lu, and Guoxi Wang  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9759-9769 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1118 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Absorption properties in one-dimensional quasiperiodic photonic crystal composed of a thin metallic layer and dielectric Fibonacci multilayers are investigated. It is found that a large number of photonic stopbands can occur at the dielectric Fibonacci multilayers. Tamm plasmon polaritons (TPPs) with the frequencies locating at each photonic stopband are excited at the interface between the metallic layer and the dielectric layer, leading to almost perfect absorption for the energy of incident wave. By adjusting the length of dielectric layer with higher refractive-index or the Fibonacci order, the number of absorption peaks can be tuned effectively and enlarged significantly.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.0240) Optics at surfaces : Optics at surfaces
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: March 25, 2011
Revised Manuscript: April 30, 2011
Manuscript Accepted: May 2, 2011
Published: May 4, 2011

Yongkang Gong, Xueming Liu, Leiran Wang, Hua Lu, and Guoxi Wang, "Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal," Opt. Express 19, 9759-9769 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  2. A. D. Parsons and D. J. Pedder, “Thin-□lm infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6(3), 1686–1689 (1988). [CrossRef]
  3. S. Longhi, “Pi-symmetric laser absorber,” Phys. Rev. A 82(3), 031801 (2010). [CrossRef]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  5. C. G. Hu, X. Li, Q. Feng, X. N. Chen, and X. G. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18(7), 6598–6603 (2010). [CrossRef] [PubMed]
  6. J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010). [CrossRef]
  7. J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006). [CrossRef] [PubMed]
  8. C. G. Hu, Z. Y. Zhao, X. N. Chen, and X. G. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009). [CrossRef] [PubMed]
  9. T. V. Teperik, F. J. Garcia, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nature 2, 299–301 (2008).
  10. F. Yu, H. Wang, and S. L. Zou, “Effcient and tunable light trapping thin films,” J. Phys. Chem. C 114(5), 2066–2069 (2010). [CrossRef]
  11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  12. X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010). [CrossRef] [PubMed]
  13. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabricated and characterization,” Phys. Rev. B 78(24), 241103 (2008). [CrossRef]
  14. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009). [CrossRef]
  15. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007). [CrossRef]
  16. M. E. Sasin, R. P. Seisyan, M. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008). [CrossRef]
  17. X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic Tamm states: the Bloch-wave-expansion method,” Phys. Rev. A 79(4), 043832 (2009). [CrossRef]
  18. S. Brand, M. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B 79(8), 085416 (2009). [CrossRef]
  19. M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, “Hybrid states of Tamm plasmons and exciton polaritons,” Appl. Phys. Lett. 95(25), 251108 (2009). [CrossRef]
  20. S. Brand, R. A. Abram, and M. A. Kaliteevski, “Bragg re〉ector enhanced attenuated total re〉ectance,” J. Appl. Phys. 106(11), 113109 (2009). [CrossRef]
  21. G. Q. Du, H. T. Jiang, Z. S. Wang, Y. P. Yang, Z. L. Wang, H. Q. Lin, and H. Chen, “Heterostructure-based optical absorbers,” J. Opt. Soc. Am. B 27(9), 1757–1762 (2010). [CrossRef]
  22. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: quasiperiodic media,” Phys. Rev. Lett. 58(23), 2436–2438 (1987). [CrossRef] [PubMed]
  23. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72(5), 633–636 (1994). [CrossRef] [PubMed]
  24. D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198(4-6), 273–279 (2001). [CrossRef]
  25. X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(24), 245104 (2001).
  26. R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80(17), 3063–3065 (2002). [CrossRef]
  27. Y. K. Gong, X. M. Liu, and L. R. Wang, “High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35(3), 285–287 (2010). [CrossRef] [PubMed]
  28. R. Riklund and M. Severin, “Optical properties of perfect and non perfect quasiperiodic multilayers a comparison with periodic and disordered multilayers,” J. Phys. C Solid State Phys. 21(17), 3217–3228 (1988). [CrossRef]
  29. D. T. Nguyen, R. A. Norwood, and N. Peyghambarian, “Multiple spectral window mirrors based on Fibonacci chains of dielectric layers,” Opt. Commun. 283(21), 4199–4202 (2010). [CrossRef]
  30. M. Born, and E. Wolf, Principles of Optics, fourth ed., Pergamon, Oxford, 1970, 58–68.
  31. A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87(26), 261105 (2005). [CrossRef]
  32. X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total-re〉ection frequency range in one dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002). [CrossRef]
  33. J. Nakayama, ““Periodic Fourier transform and its application to wave scattering from a finite periodic surface: Two-dimensional case,” IEICE Trans. Electron,” E 88-C, 1025–1032 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited