OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9783–9800

Atmospheric correction in presence of sun glint: application to MERIS

François Steinmetz, Pierre-Yves Deschamps, and Didier Ramon  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9783-9800 (2011)
http://dx.doi.org/10.1364/OE.19.009783


View Full Text Article

Enhanced HTML    Acrobat PDF (3519 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The sun glint is a major issue for the observation of ocean color from space. For sensors without a tilting capacity, the observations at sub-tropical latitudes are contaminated by the bright pattern of the specular reflexion of the sun by the wavy sea surface. Common atmospheric correction algorithms are not designed to work in these observation conditions, reducing the spatial coverage at such latitudes by nearly a half. We describe an original atmospheric correction algorithm, named POLYMER, designed to recover ocean color parameters in the whole sun glint pattern. It has been applied to MERIS data, and validated against in-situ data from SIMBADA. The increase of useful coverage of MERIS measurements for ocean color is major, and the accuracy of the retrieved parameters is not significantly reduced in the presence of high sunglint, while, outside the sunglint area, it remains about the same as by using the standard algorithm.

© 2011 OSA

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 29, 2010
Revised Manuscript: January 7, 2011
Manuscript Accepted: January 28, 2011
Published: May 5, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
François Steinmetz, Pierre-Yves Deschamps, and Didier Ramon, "Atmospheric correction in presence of sun glint: application to MERIS," Opt. Express 19, 9783-9800 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9783


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17, 1631–1636 (1978). [CrossRef] [PubMed]
  2. H. R. Gordon and D. K. Clark, “Clear water radiances for atmospheric correction of Coastal Zone Color Scanner imagery,” Appl. Opt. 20, 4175–4180 (1981). [CrossRef] [PubMed]
  3. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997). [CrossRef]
  4. H. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef] [PubMed]
  5. D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20(9), 1875–1916 (1999). [CrossRef]
  6. M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40, 4790–4798 (2001). [CrossRef]
  7. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46, 1535–1547 (2007). [CrossRef] [PubMed]
  8. H. R. Gordon, T. Du, and T. Zhang, “Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption,” Appl. Opt. 36, 8670–8684 (1997). [CrossRef]
  9. C. Moulin, H. R. Gordon, R. M. Chomko, V. F. Banzon, and R. H. Evans, “Atmospheric correction of ocean color imagery through thick layers of Saharan dust,” Geophys. Res. Lett. 28, 5–8 (2001). [CrossRef]
  10. R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Rem. Sen. Environ. 84, 208–220 (2003). [CrossRef]
  11. C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters I: Implementation and performance,” Rem. Sen. Environ. 113, 571–587 (2009). [CrossRef]
  12. P. Shanmugam and Y.-H. Ahn, “New atmospheric correction technique to retrieve the ocean colour from seawifs imagery in complex coastal waters,” J. Opt. A, Pure Appl. Opt. 9, 511–530 (2007). [CrossRef]
  13. H. Schiller and R. Doerffer, “Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data,” Int. J. Remote Sens. 20(9), 1735–1746 (1999). [CrossRef]
  14. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954). [CrossRef]
  15. J. Lenoble, M. Herman, J. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spect. Radiat. Transf. 107, 479–507 (2007). [CrossRef]
  16. L. D’Alba and P. Colagrande, “MERIS smile effect characterization and correction,” Tech. rep., ESA (2005).
  17. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10749–10768 (1988). [CrossRef]
  18. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters : a reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001). [CrossRef]
  19. A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007). [CrossRef]
  20. H. Buiteveld, J. H. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994). [CrossRef]
  21. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  22. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr. 43, 847–857 (1998). [CrossRef]
  23. K. G. Ruddick, V. D. Cauver, and Y. J. Park, “Seaborne measurements of near-infrared water leaving reflectance: the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006). [CrossRef]
  24. J. Nelder and R. Mead, “A simplex method for function minimization,” Computer J. 7, 308–313 (1965).
  25. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Environ. Res. Paper Air Force Geophysics Lab. (1979).
  26. C. Brockmann, “Limitations of the application of the MERIS atmospheric correction,” Meeting on MERIS and AATSR Calibration and Geophysical Validation (MAVT) (2006).
  27. G. Bécu, “Contribution à la vérification des observations spatiales de la couleur de l’océan à l’aide du réseau de radiomtres optiques SIMBADA,” Ph.D. thesis, Laboratoire d’Optique Atmosphérique (2004).
  28. K. Barker, C. Mazeran, C. Lerebourg, M. Bouvet, D. Antoine, M. Ondrusek, G. Zibordi, and S. Lavender, “MERMAID: The MEris MAtchup In-situ Database,” MERIS and (A)ATSR Workshop, Frascati (2008).
  29. A. Morel and D. Antoine, “Pigment index retrieval in case 1 waters, ATBD 2.7 MERIS,” Tech. rep., Laboratoire d’Océanographie de Villefranche (2007).
  30. D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. (Oceans) 113, C07013 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited