OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9807–9813

Light emission rate enhancement from InP MQW by plasmon nano-antenna arrays

David Arbel, Nikolai Berkovitch, Amir Nevet, Andrea Peer, Shimon Cohen, Dan Ritter, and Meir Orenstein  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9807-9813 (2011)
http://dx.doi.org/10.1364/OE.19.009807


View Full Text Article

Enhanced HTML    Acrobat PDF (1090 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Arrays of gold single-strip and double-strip nano-antennas, with resonance in the wavelength range of 1200-1600nm, were fabricated on the top of InGaAs/InP multi quantum well structure. Photo-luminescence from the quantum-wells was measured and shown to be enhanced by a factor of up to 9, with maximum enhancement wavelength corresponding to the nano-antennas resonance. Emission enhancement is attributed to the coupling of emitting charge-carriers to the plasmonic nano-antennas, causing an estimated increase in the radiative recombination rate by a factor of ~25, thus making it dominant over non-radiative recombination. This effect will enable fast modulation of InP-based nano-emitters spontaneously emitting at telecom-wavelength.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 8, 2011
Revised Manuscript: May 2, 2011
Manuscript Accepted: May 3, 2011
Published: May 5, 2011

Citation
David Arbel, Nikolai Berkovitch, Amir Nevet, Andrea Peer, Shimon Cohen, Dan Ritter, and Meir Orenstein, "Light emission rate enhancement from InP MQW by plasmon nano-antenna arrays," Opt. Express 19, 9807-9813 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9807


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007). [CrossRef] [PubMed]
  4. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  5. J. J. Greffet, “Applied physics. Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005). [CrossRef] [PubMed]
  6. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]
  7. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]
  8. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25(10), 1748 (2008). [CrossRef]
  9. C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75(17), 3098–3101 (1995). [CrossRef] [PubMed]
  10. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806 (1996). [CrossRef]
  11. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Phys. Rev. Lett. 82, 257 (2003).
  12. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002). [CrossRef] [PubMed]
  13. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002). [CrossRef]
  14. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]
  15. Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009). [CrossRef]
  16. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006). [CrossRef]
  17. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007). [CrossRef] [PubMed]
  18. R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008). [CrossRef]
  19. T. Qiu, F. Kong, X. Yu, W. Zhang, X. Lang, and P. K. Chu, “Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays,” Appl. Phys. Lett. 95(21), 213104 (2009). [CrossRef]
  20. A. Gopinath, S. V. Boriskina, S. Yerci, R. Li, and L. Dal Negro, “Enhancement of the 1.5um Er3+ emission from quasiperiodic plasmonic arrays,” Appl. Phys. Lett. 96, 0171113 (2010).
  21. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007). [CrossRef] [PubMed]
  22. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008). [CrossRef] [PubMed]
  23. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379 (2000). [CrossRef]
  24. C. F. Bohren and D. R. Huffman, Scattering and Absorption from Metal Nano-Particles (Wiley, 2004).
  25. C. H. Henry, R. A. Logan, F. R. Merritt, and C. G. Bethea, “Radiative and nonradiative lifetimes in n-type and p-type 1.6 μm InGaAs,” Electron. Lett. 20(9), 358 (1984). [CrossRef]
  26. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited