OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9820–9835

Modeling of light scattering in different regimes of surface roughness

Sven Schröder, Angela Duparré, Luisa Coriand, Andreas Tünnermann, Dayana H. Penalver, and James E. Harvey  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9820-9835 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1127 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The light scattering of rough metallic surfaces with roughness levels ranging from a few to several hundred nanometers is modeled and compared to experimental data. Different modeling approaches such as the classical Rayleigh-Rice vector perturbation theory and the new Generalized Harvey-Shack theory are used and critically assessed with respect to ranges of validity, accuracy, and practicability. Based on theoretical calculations and comparisons with Rigorous Coupled Wave Analysis for sinusoidal phase gratings, it is demonstrated that the approximate scatter models yield surprisingly accurate results and at the same time provide insight into light scattering phenomena. For stochastically rough metal surfaces, the predicted angles resolved scattering is compared to experimental results at 325 nm, 532 nm, and 1064 nm. In addition, the possibilities of retrieving roughness information from measured scattering data for different roughness regimes are discussed.

© 2011 OSA

OCIS Codes
(240.5770) Optics at surfaces : Roughness
(290.0290) Scattering : Scattering
(290.5835) Scattering : Scattering, Harvey

ToC Category:

Original Manuscript: February 14, 2011
Revised Manuscript: April 7, 2011
Manuscript Accepted: May 1, 2011
Published: May 5, 2011

Sven Schröder, Angela Duparré, Luisa Coriand, Andreas Tünnermann, Dayana H. Penalver, and James E. Harvey, "Modeling of light scattering in different regimes of surface roughness," Opt. Express 19, 9820-9835 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. L. Church and P. Z. Takacs, “Specification of surface figure and finish in terms of system performance,” Appl. Opt. 32(19), 3344–3353 (1993). [CrossRef] [PubMed]
  2. J. E. Harvey, K. L. Lewotsky, and A. Kotha, “Effects of surface scatter on the optical performance of x-ray synchrotron beam-line mirrors,” Appl. Opt. 34(16), 3024–3032 (1995). [CrossRef] [PubMed]
  3. A. Duparré, “Scattering from surfaces and thin films,” in Encyclopedia of Modern Optics, B. D. Guenther, D. G. Steel, and L. Bayvel, eds. (Elsevier, 2004).
  4. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3Suppl 3), A335–A341 (2010). [CrossRef] [PubMed]
  5. S. Schröder, A. Duparré, K. Füchsel, N. Kaiser, A. Tünnermann, and J. E. Harvey, “Scattering of Roughened TCO Films - Modeling and Measurement,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThD3.
  6. M. Flemming, L. Coriand, and A. Duparré, “Ultra-hydrophobicity through stochastic surface roughness,” J. Adhes. Sci. Technol. 23(3), 381–400 (2009). [CrossRef]
  7. S. Schröder, A. Duparré, “Finish assessment of complex surfaces by advanced light scattering techniques,” Proc. SPIE 7102, paper 0F (2008).
  8. T. M. Elfouhaily and C. A. Guerin, “A critical survey of approximate scattering wave theories from random rough surfaces,” Waves Random Media 14(4), R1–R40 (2004). [CrossRef]
  9. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, (Pergamon Press, 1963).
  10. S. O. Rice, “Reflection of electromagnetic waves from slightly rough surfaces,” Commun. Pure Appl. Math. 4(2-3), 351–378 (1951). [CrossRef]
  11. E. L. Church, H. A. Jenkinson, and J. M. Zavada, “Relationship #res,” Opt. Eng. 18, 125 (1979).
  12. J. M. Elson and J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979).
  13. J. C. Stover, Optical Scattering, Measurement and Analysis, 2nd ed. (SPIE Press, 1995).
  14. J. E. Harvey, “Light-scattering characteristics of optical surfaces,” Ph.D. Dissertation, University of Arizona (1976).
  15. T. V. Vorburger, E. Marx, and T. R. Lettieri, “Regimes of surface roughness measurable with light scattering,” Appl. Opt. 32(19), 3401–3408 (1993). [CrossRef] [PubMed]
  16. J. E. Harvey, N. Choi, and A. Krywonos, “Scattering from moderately rough interfaces between two arbitrary media,” Proc. SPIE 7794, 77940V, 77940V-11 (2010). [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of grating diffraction—E-mode polarization and losses,” J. Opt. Soc. Am. 73(4), 451–455 (1983). [CrossRef]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  19. E. L. Church, “Statistical effects in the measurement and characterization of smooth scattering surfaces,” Proc. SPIE 511, 18 (1984).
  20. A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41(1), 154–171 (2002). [CrossRef] [PubMed]
  21. “Optics and optical instruments-test methods for radiation scattered by optical components,” ISO 13696:2002 (International Organization for Standardization, 2002).
  22. J. E. Harvey, A. Krywonos, and C. L. Vernold, “Modified Beckmann-Kirchhoff scattering model for rough surfaces with large incident and scattering angles,” Opt. Eng. 46(7), 078002 (2007). [CrossRef]
  23. M. Trost, S. Schröder, T. Feigl, A. Duparré, and A. Tünnermann, “Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers,” Appl. Opt. 50(9), C148–C153 (2011). [CrossRef] [PubMed]
  24. A. Krywonos, “Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction,” Ph.D. Dissertation, College of Optics and Photonics, University of Central Florida (2006).
  25. J. E. Harvey, N. Choi, A. Krywonos, and J. Marcen, “Calculating BRDFs from surface PSDs for moderately rough surfaces,” Proc. SPIE 7426, 74260I, 74260I-9 (2009). [CrossRef]
  26. A. Krywonos, J. E. Harvey, and N. Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” Accepted for publication in J. Opt. Soc. Am. A (March 25, 2011)
  27. J. C. Stover, “Experimental confirmation of the Rayleigh-Rice obliquity factor,” Proc. SPIE 7792, 77920J, 77920J-5 (2010). [CrossRef]
  28. S. Schröder, T. Herffurth, H. Blaschke, and A. Duparré, “Angle-resolved scattering: an effective method for characterizing thin-film coatings,” Appl. Opt. 50(9), C164–C171 (2011). [CrossRef] [PubMed]
  29. A. von Finck, M. Hauptvogel, and A. Duparré, “Instrument for close-to-process light scatter measurements of thin film coatings and substrates,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThD4.
  30. J. E. Harvey, A. Krywonos, and D. Bogunovic, “Nonparaxial scalar treatment of sinusoidal phase gratings,” J. Opt. Soc. Am. A 23(4), 858–865 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited