OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9881–9889

Experimental comparison of modulation formats in IM/DD links

Krzysztof Szczerba, Johnny Karout, Petter Westbergh, Erik Agrell, Magnus Karlsson, Peter Andrekson, and Anders Larsson  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9881-9889 (2011)
http://dx.doi.org/10.1364/OE.19.009881


View Full Text Article

Enhanced HTML    Acrobat PDF (3797 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an experimental comparison of modulation formats for optical intensity modulated links with direct detection. Specifically, we compare OOK, QPSK on an electrical subcarrier and a new modulation format named OOPSK. The OOPSK modulation format is shown to have better sensitivity than the other modulation formats, in agreement with theoretical predictions. The impact of propagation in multimode fiber is also studied and the results show that all modulation formats have similar sensitivity penalties, with respect to the fibre length.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 4, 2011
Revised Manuscript: April 21, 2011
Manuscript Accepted: April 25, 2011
Published: May 5, 2011

Citation
Krzysztof Szczerba, Johnny Karout, Petter Westbergh, Erik Agrell, Magnus Karlsson, Peter Andrekson, and Anders Larsson, "Experimental comparison of modulation formats in IM/DD links," Opt. Express 19, 9881-9889 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9881


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009). [CrossRef]
  2. S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009). [CrossRef]
  3. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010). [CrossRef]
  4. J. E. Cunningham, D. Beckman, D. Huang, T. Sze, K. Cai, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs using 0.13 μm CMOS,” OSA Topical Meeting on Information Photonics , (2005).
  5. F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK- and PAM-4 modulation for 10 Gbit/s Transmission over up to 300 m polymer optical fiber,” Optical Fiber Communication Conference, OSA Technical Digest (2008), paper OWB5.
  6. F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “PAM-4 signalling for gigabit transmission over standard step-index plastic optical fiber using light emitting diodes,” European Conference on Optical Communication , (2008), paper We2A3. [CrossRef]
  7. J. R. Barry, Wireless Infrared Communications (Kluwer, 1994). [CrossRef]
  8. S. Hranilovic, Wireless Optical Communication Systems (Springer, 2005).
  9. A. O. J. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” Optical Fiber Communication Conference , OSA Technical Digest, (2009), paper OTuE1.
  10. K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2. [CrossRef]
  11. B.-E. Olsson and M. Sköld, “QPSK transmitter based on optical amplitude modulation of electrically generated QPSK signal,” Asia Optical Fiber Communication & Optoelectronic Exposition & Conference , OSA Technical Digest, (2008), paper SaA3.
  12. B.-E. Olsson and A. Alping, “Electro-optical subcarrier modulation transmitter for 100 GbE DWDM transport,” Asia Optical Fiber Communication & Optoelectronic Exposition & Conference , OSA Technical Digest, (2008), paper SaF3.
  13. B.-E. Olsson, J. Mårtensson, A. Kristiansson, and A. Alping, “RF-assisted optical dual-carrier 112 Gbit/s polarization-multiplexed 16-QAM transmitter,” Optical Fiber Communication Conference , OSA Technical Digest (2010), paper OMK5.
  14. S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation,” J. Opt. Netw. 7, 183–196 (2008), (Invited paper). [CrossRef]
  15. S. C. J. Lee, F. Breyer, S. Randel, D. Cardenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multi-tone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” Conference on Optical Fiber Communication , OSA Technical Digest, (2009), paper OWM2.
  16. H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol . 28, 352–359 (2010). [CrossRef]
  17. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997). [CrossRef]
  18. R. You and J. M. Kahn, “Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals,” IEEE Trans. Commun . 49, 2164–2171 (2001). [CrossRef]
  19. W. Kang and S. Hranilovic, “Optical power reduction for multiple-subcarrier modulated indoor wireless optical channels,” IEEE International Conference on Communications , (2006), 2743–2748. [CrossRef]
  20. S. Hranilovic and D. A. Johns, “A multilevel modulation scheme for high-speed wireless infrared communications,” in IEEE International Symposium on Circuits and Systems , (1999), 338–341.
  21. S. Hranilovic and F. R. Kschischang, “Optical intensity-modulated direct detection channels: signal space and lattice codes,” IEEE Trans. Inf. Theory 49, 1385–1399 (2003). [CrossRef]
  22. S. Hranilovic (2005), “On the design of bandwidth efficient signalling for indoor wireless optical channels,” Int. J. Commun. Syst. 18, 205–228 (2005). [CrossRef]
  23. J. Karout, E. Agrell, and M. Karlsson, “Power efficient subcarrier modulation for intensity modulated channels,” Opt. Express 18, 17913–17921 (2010). [CrossRef] [PubMed]
  24. R. G. Gallager, Principles of Digital Communication (Cambridge, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited