OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9890–9895

Multichannel routing of diffraction-inhibited beams in two-dimensional photonic crystals

Lingling Zhang, Qiwen Zhan, Binfeng Yun, Jiayu Zhang, and Yiping Cui  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9890-9895 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1066 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that two rows of photonic lattices on each side of a narrow diffraction-inhibited beam are sufficient for confinement, enabling the launching of multi-beams with an interval of one lattice constant for independent propagation. A few integrated photonic circuit building blocks including arbitrary angle bends, power splitter and intersection are designed to realize flexible controls of the diffraction-inhibited beams. In addition, under wide beam illumination, incident beam power is well separated by the lattices rows, facilitating the simultaneous excitation of multiple diffraction-inhibited beams. These novel effects and building blocks offer exceptional opportunities for multichannel photonic routing.

© 2011 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(230.7380) Optical devices : Waveguides, channeled
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: March 4, 2011
Revised Manuscript: April 9, 2011
Manuscript Accepted: April 9, 2011
Published: May 5, 2011

Lingling Zhang, Qiwen Zhan, Binfeng Yun, Jiayu Zhang, and Yiping Cui, "Multichannel routing of diffraction-inhibited beams in two-dimensional photonic crystals," Opt. Express 19, 9890-9895 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Longhi, “Multiband diffraction and refraction control in binary arrays of periodically curved waveguides,” Opt. Lett. 31(12), 1857–1859 (2006). [CrossRef] [PubMed]
  2. Y. V. Kartashov, A. Szameit, V. A. Vysloukh, and L. Torner, “Light tunneling inhibition and anisotropic diffraction engineering in two-dimensional waveguide arrays,” Opt. Lett. 34(19), 2906–2908 (2009). [CrossRef] [PubMed]
  3. A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Inhibition of light tunneling in waveguide arrays,” Phys. Rev. Lett. 102(15), 153901 (2009). [CrossRef] [PubMed]
  4. Y. V. Kartashov and V. A. Vysloukh, “Light tunneling inhibition in longitudinally modulated Bragg-guiding arrays,” Opt. Lett. 35(12), 2097–2099 (2010). [CrossRef] [PubMed]
  5. Y. V. Kartashov and V. A. Vysloukh, “Light tunneling inhibition in array of couplers with longitudinal refractive index modulation,” Opt. Lett. 35(2), 205–207 (2010). [CrossRef] [PubMed]
  6. V. E. Lobanov, V. A. Vysloukh, and Y. V. Kartashov, “Inhibition of light tunneling for multichannel excitations in longitudinally modulated waveguide arrays,” Phys. Rev. A 81(2), 023803 (2010). [CrossRef]
  7. P. Zhang, N. K. Efremidis, A. Miller, Y. Hu, and Z. G. Chen, “Observation of coherent destruction of tunneling and unusual beam dynamics due to negative coupling in three-dimensional photonic lattices,” Opt. Lett. 35(19), 3252–3254 (2010). [CrossRef] [PubMed]
  8. D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 90(5), 053902 (2003). [CrossRef] [PubMed]
  9. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  10. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1214 (1999). [CrossRef]
  12. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1246–1257 (2002). [CrossRef]
  13. X. F. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251–3253 (2003). [CrossRef]
  14. Z. F. Li, H. B. Chen, Z. T. Song, F. H. Yang, and S. L. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85(21), 4834–4836 (2004). [CrossRef]
  15. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006). [CrossRef] [PubMed]
  16. D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007). [CrossRef]
  17. R. S. Chu and T. Tamir, “Group velocity in space-time periodic media,” Electron. Lett. 7(14), 410–412 (1971). [CrossRef]
  18. L. L. Zhang, Q. W. Zhan, J. Y. Zhang, and Y. P. Cui, “Diffraction inhibition in two-dimensional photonic crystals,” Opt. Lett. 36(5), 651–653 (2011). [CrossRef] [PubMed]
  19. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]
  20. S. G. Lee, S. S. Oh, J. E. Kim, H. Y. Park, and C. S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87(18), 181106 (2005). [CrossRef]
  21. M. Wang, M. J. Yun, W. J. Kong, and C. L. Cui, “Beam splitter and beam bends based on self-collimation effect in two-dimensional photonic crystals,” J. Mod. Opt. 56(10), 1159–1162 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (3149 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited