OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9908–9914

Position clamping in a holographic counterpropagating optical trap

Richard Bowman, Alexander Jesacher, Gregor Thalhammer, Graham Gibson, Monika Ritsch-Marte, and Miles Padgett  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9908-9914 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical traps consisting of two counterpropagating, divergent beams of light allow relatively high forces to be exerted along the optical axis by turning off one beam, however the axial stiffness of the trap is generally low due to the lower numerical apertures typically used. Using a high speed spatial light modulator and CMOS camera, we demonstrate 3D servocontrol of a trapped particle, increasing the stiffness from 0.004 to 1.5μNm−1. This is achieved in the “macro-tweezers” geometry [Thalhammer, J. Opt. 13, 044024 (2011); Pitzek, Opt. Express 17, 19414 (2009)], which has a much larger field of view and working distance than single-beam tweezers due to its lower numerical aperture requirements. Using a 10×, 0.2NA objective, active feedback produces a trap with similar effective stiffness to a conventional single-beam gradient trap, of order 1μNm−1 in 3D. Our control loop has a round-trip latency of 10ms, leading to a resonance at 20Hz. This is sufficient bandwidth to reduce the position fluctuations of a 10μm bead due to Brownian motion by two orders of magnitude. This approach can be trivially extended to multiple particles, and we show three simultaneously position-clamped beads.

© 2011 OSA

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(140.7010) Lasers and laser optics : Laser trapping
(230.6120) Optical devices : Spatial light modulators
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: March 10, 2011
Revised Manuscript: April 14, 2011
Manuscript Accepted: April 14, 2011
Published: May 5, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Richard Bowman, Alexander Jesacher, Gregor Thalhammer, Graham Gibson, Monika Ritsch-Marte, and Miles Padgett, "Position clamping in a holographic counterpropagating optical trap," Opt. Express 19, 9908-9914 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. B. G. Thalhammer, R. Steiger, and M. Ritsch-Marte, “Optical macro-tweezers: trapping of highly motile micro-organisms,” J. Opt. 13(4), 044024 (2011). [CrossRef]
  2. M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Optical mirror trap with a large field of view,” Opt. Express 17(22), 19414–19423 (2009). [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  4. K. Svoboda, C. Schmidt, B. Schnapp, and S. M. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993). [CrossRef] [PubMed]
  5. J. Molloy and M. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43(4), 241–258 (2002). [CrossRef]
  6. K. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004). [CrossRef]
  7. M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999). [CrossRef]
  8. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  9. G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51(3), 409–414 (2004). [CrossRef]
  10. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  11. P. Rodrigo, V. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86(7), 074103 (2005). [CrossRef]
  12. P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express 17(8), 6578–6583 (2009). [CrossRef] [PubMed]
  13. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiberoptic light-force trap,” Opt. Lett. 18(21), 1867–1869 (1993). [CrossRef] [PubMed]
  14. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001). [CrossRef] [PubMed]
  15. S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A 11(3), 034011 (2009). [CrossRef]
  16. M. Woerdemann, K. Berghoff, and C. Denz, “Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation,” Opt. Express 18(21), 22348–22357 (2010). [CrossRef] [PubMed]
  17. I. Perch-Nielsen, P. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 13(8), 2852–2857 (2005). [CrossRef] [PubMed]
  18. S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express 18(17), 18217–18222 (2010). [CrossRef] [PubMed]
  19. K. D. Wulff, D. G. Cole, and R. L. Clark, “Servo control of an optical trap,” Appl. Opt. 46(22), 4923–4931 (2007). [CrossRef] [PubMed]
  20. A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008). [CrossRef]
  21. J. E. Molloy, J. E. Burns, J. Kendrick-jones, R. T. Tregear, and D. C. S. White, “Movement and force produced by a single myosin head,” Nature 378(6553), 209–212 (1995). [CrossRef] [PubMed]
  22. H. Sehgal, T. Aggarwal, and M. V. Salapaka, “High bandwidth force estimation for optical tweezers,” Appl. Phys. Lett. 94(15), 153114 (2009). [CrossRef]
  23. R. W. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express 18(11), 11785–11790 (2010). [CrossRef] [PubMed]
  24. D. Preece, R. W. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17(25), 22718–22725 (2009). [CrossRef]
  25. R. W. Bowman, D. Preece, G. Gibson, and M. J. Padgett, “Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers.” J. Opt. A 13(4), 044003 (2011).
  26. O. Otto, F. Czerwinski, J. L. Gornall, G. Stober, L. B. Oddershede, R. Seidel, and U. F. Keyser, “Real-time particle tracking at 10,000 fps using optical fiber illumination,” Opt. Express 18(22), 22722–22733 (2010). [CrossRef] [PubMed]
  27. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006). [CrossRef] [PubMed]
  28. S.-H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15(4), 1505–1512 (2007). [CrossRef] [PubMed]
  29. J. S. Dam, I. R. Perch-Nielsen, D. Palima, and J. Glückstad, “Three-dimensional imaging in three-dimensional optical multi-beam micromanipulation,” Opt. Express 16(10), 7244–7250 (2008). [CrossRef] [PubMed]
  30. J. S. Dam, I. Perch-Nielsen, D. Palima, and J. Glückstad, “Multi-particle three-dimensional coordinate estimation in real-time optical manipulation,” J. Eur. Opt. Soc. Rapid Publ. 4, 09045 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MPG (3508 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited