OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9962–9967

Integrated silicon-based nanoplasmonic sensor

L. Guyot, A-P Blanchard-Dionne, S. Patskovsky, and M. Meunier  »View Author Affiliations

Optics Express, Vol. 19, Issue 10, pp. 9962-9967 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (957 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The concept of an integrated nanoplasmonic sensor implemented on a silicon substrate is presented. Developed experimental setup based on rotation of linearly polarized light provides intensity detection between two orthogonal polarizations of a He-Ne laser beam. This optical configuration yields to a sensitivity improvement and noise reduction, resulting in a resolution of 4x10−5 Refractive Index Units. Proposed methodology is promising for the application in portable nanoplasmonic multisensing and imaging.

© 2011 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: February 8, 2011
Revised Manuscript: March 29, 2011
Manuscript Accepted: March 30, 2011
Published: May 6, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

L. Guyot, A-P Blanchard-Dionne, S. Patskovsky, and M. Meunier, "Integrated silicon-based nanoplasmonic sensor," Opt. Express 19, 9962-9967 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag Tracts Mod. Phys. 111 (Springer-Verlag, 1988)
  2. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995). [CrossRef] [PubMed]
  3. Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009). [CrossRef]
  4. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010). [CrossRef] [PubMed]
  5. F. Mazzotta, G. Wang, C. Hägglund, F. Höök, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosens. Bioelectron. 26(4), 1131–1136 (2010). [CrossRef] [PubMed]
  6. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998). [CrossRef]
  7. F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo, and D. Sinton, “Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays,” Appl. Phys. Lett. 92(25), 253103 (2008). [CrossRef]
  8. B. G. Streetman, and S. Banerjee, Solid State Electronic Devices, 5th ed. (Prentice-Hall, NJ, 2006).
  9. O. Bazkir, “Quantum efficiency determination of unbiased silicon photodiode and photodiode based trap detectors,” Rev. Adv. Mater. Sci. 21, 90–98 (2009).
  10. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tailsin hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003). [CrossRef]
  11. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002). [CrossRef]
  12. A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochim. Acta 435(2), 197–201 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited