OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 10 — May. 9, 2011
  • pp: 9976–9985

Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference

Jianjun Chen, Zhi Li, Jia Li, and Qihuang Gong  »View Author Affiliations


Optics Express, Vol. 19, Issue 10, pp. 9976-9985 (2011)
http://dx.doi.org/10.1364/OE.19.009976


View Full Text Article

Acrobat PDF (1562 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using strong couplings of different Fabry–Perot (FP) resonators in metal–insulator–metal waveguides, a compact plasmonic wavelength demultiplexer is numerically demonstrated with high wavelength resolution. In the demultiplexer, it is found that new right–angle resonators emerge with bandwidth narrower than that of the isolated FP resonators. These narrowband right–angle resonators interfere with the broadband FP resonators, resulting in Fano–line shapes in the transmission spectra. Consequently, these sharp and asymmetric Fano–line shapes considerably increase the resolution of wavelength demultiplexing, which is significantly narrower than the full width of the isolated FP resonator.

© 2011 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.0130) Integrated optics : Integrated optics
(240.6680) Optics at surfaces : Surface plasmons
(260.3160) Physical optics : Interference

ToC Category:
Integrated Optics

History
Original Manuscript: March 14, 2011
Revised Manuscript: April 20, 2011
Manuscript Accepted: May 3, 2011
Published: May 6, 2011

Citation
Jianjun Chen, Zhi Li, Jia Li, and Qihuang Gong, "Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference," Opt. Express 19, 9976-9985 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-10-9976


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer–Verlag, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]
  4. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008). [CrossRef]
  5. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981). [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  7. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon–polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007). [CrossRef]
  8. G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  9. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009). [CrossRef]
  10. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010). [CrossRef] [PubMed]
  11. E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008). [CrossRef] [PubMed]
  12. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010). [CrossRef] [PubMed]
  13. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-26-24096 . [CrossRef] [PubMed]
  14. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  15. A. A. Reiserer, J. S. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18(11), 11810–11820 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-11-11810 . [CrossRef] [PubMed]
  16. A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009). [CrossRef]
  17. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal–dielectric–metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-11-11111 . [CrossRef] [PubMed]
  18. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]
  19. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008). [CrossRef] [PubMed]
  20. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited