OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S1 — Jan. 3, 2011
  • pp: A7–A19

Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoimprinted gratings

Jörg Frischeisen, Quan Niu, Alaa Abdellah, Jörg B. Kinzel, Robert Gehlhaar, Giuseppe Scarpa, Chihaya Adachi, Paolo Lugli, and Wolfgang Brütting  »View Author Affiliations

Optics Express, Vol. 19, Issue S1, pp. A7-A19 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1894 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Organic light-emitting diodes (OLEDs) usually exhibit a low light outcoupling efficiency because a large fraction of power is lost to surface plasmons (SPs) and waveguide modes. In this paper it is demonstrated that periodic grating structures with almost µm-scale can be used to extract SPs as well as waveguide modes and therefore enhance the outcoupling efficiency in light-emitting thin film structures. The gratings are fabricated by nanoimprint lithography using a commercially available diffraction grating as a mold which is pressed into a polymer resist. The outcoupling of SPs and waveguide modes is detected in fluorescent organic films adjacent to a thin metal layer in angular dependent photoluminescence measurements. Scattering up to 5th-order is observed and the extracted modes are identified by comparison to the SP and waveguide dispersion obtained from optical simulations. In order to demonstrate the low-cost, high quality and large area applicability of grating structures in optoelectronic devices, we also present SP extraction using a grating structure fabricated by a common DVD stamp.

© 2010 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(160.4890) Materials : Organic materials
(230.0250) Optical devices : Optoelectronics
(230.4000) Optical devices : Microstructure fabrication
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Light-Emitting Diodes

Original Manuscript: August 16, 2010
Revised Manuscript: October 13, 2010
Manuscript Accepted: October 13, 2010
Published: November 16, 2010

Jörg Frischeisen, Quan Niu, Alaa Abdellah, Jörg B. Kinzel, Robert Gehlhaar, Giuseppe Scarpa, Chihaya Adachi, Paolo Lugli, and Wolfgang Brütting, "Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoimprinted gratings," Opt. Express 19, A7-A19 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008). [CrossRef]
  2. S. Nowy, J. Frischeisen, and W. Brütting, “Simulation based optimization of light-outcoupling in organic light-emitting diodes,” Proc. SPIE 7415, 74151C (2009). [CrossRef]
  3. L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, and W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005). [CrossRef]
  4. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009). [CrossRef] [PubMed]
  5. S. Mladenovski, K. Neyts, D. Pavicic, A. Werner, and C. Rothe, “Exceptionally efficient organic light emitting devices using high refractive index substrates,” Opt. Express 17(9), 7562–7570 (2009). [CrossRef] [PubMed]
  6. J.-S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations,” J. Appl. Phys. 88(2), 1073–1081 (2000). [CrossRef]
  7. J. M. Ziebarth and M. D. McGehee, “A theoretical and experimental investigation of light extraction from polymer light-emitting diodes,” J. Appl. Phys. 97(6), 064502 (2005). [CrossRef]
  8. J. Frischeisen, D. Yokoyama, C. Adachi, and W. Brütting, “Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements,” Appl. Phys. Lett. 96(7), 073302 (2010). [CrossRef]
  9. D. Yokoyama, A. Sakaguchi, M. Suzuki, and C. Adachi, “Horizontal orientation of linear-shaped organic molecules having bulky substituents in neat and doped vacuum-deposited amorphous films,” Org. Electron. 10(1), 127–137 (2009). [CrossRef]
  10. J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, and W. Brütting, “Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters,” (submitted).
  11. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82(21), 3779–3781 (2003). [CrossRef]
  12. U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008). [CrossRef]
  13. J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, “Extracting light from polymer light-emitting diodes using stamped Bragg gratings,” Adv. Funct. Mater. 14(5), 451–456 (2004). [CrossRef]
  14. J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340–3342 (2000). [CrossRef]
  15. S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons,” Phys. Rev. B 69(24), 245418 (2004). [CrossRef]
  16. S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8(2-3), 136–147 (2007). [CrossRef]
  17. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004). [CrossRef] [PubMed]
  18. S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182–184 (2004). [CrossRef]
  19. J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005). [CrossRef]
  20. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Chap. 2.
  21. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007), Chap. 2–3.
  22. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996). [CrossRef]
  23. S. Harrer, S. Strobel, G. Scarpa, G. Abstreiter, M. Tornow, and P. Lugli, “Room temperature nanoimprint lithography using molds fabricated by molecular beam epitaxy,” IEEE Trans. Nanotechnol. 7(3), 363–370 (2008). [CrossRef]
  24. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995). [CrossRef] [PubMed]
  25. G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006). [CrossRef]
  26. K. A. Schouhamer Immink, “The digital versatile disc (DVD): System requirements and channel coding,” SMPTE J. 105, 483–489 (1996).
  27. J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25(4), 2297–2300 (1982). [CrossRef]
  28. W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited