OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S2 — Mar. 14, 2011
  • pp: A157–A165

Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration

Young Min Song, Gyeong Cheol Park, Sung Jun Jang, Jong Hoon Ha, Jae Su Yu, and Yong Tak Lee  »View Author Affiliations


Optics Express, Vol. 19, Issue S2, pp. A157-A165 (2011)
http://dx.doi.org/10.1364/OE.19.00A157


View Full Text Article

Enhanced HTML    Acrobat PDF (3960 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present bioinspired artificial compound eye surface structures that consist of antireflective subwavelength structures (SWSs) on hexagonally patterned microstructures (MSs), for the purpose of efficient light escaping inside light-emitting materials/devices. Theoretical understanding and geometrical optimization of SWSs on MSs are described together with rigorous coupled-wave analysis. As a proof of this concept, AlGaInP red light-emitting diodes (LEDs) with SWS/MSs were fabricated, and a light output power enhancement of 72.47% was achieved as compared to that of conventional LEDs. The artificial compound eye structures are not limited to LEDs, and the fabrication process is compatible with most semiconductor device manufacturing processes; hence, this concept opens up new possibilities for improving the optical performance of various optoelectronic device applications.

© 2011 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: December 10, 2010
Manuscript Accepted: February 1, 2011
Published: February 14, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Young Min Song, Gyeong Cheol Park, Sung Jun Jang, Jong Hoon Ha, Jae Su Yu, and Yong Tak Lee, "Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration," Opt. Express 19, A157-A165 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S2-A157


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Ghiradella, “Structure and development of iridescent butterfly scales: lattices and laminae,” J. Morphol. 202(1), 69–88 (1989). [CrossRef]
  2. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colours: Now you see it – now you don’t,” Nature 410(6824), 36 (2001). [CrossRef] [PubMed]
  3. W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202(1), 1–8 (1997). [CrossRef]
  4. P. B. Clapham and M. C. Hutley, ““Reduction of lens reflection by the “moth eye” principle,” Nature 244(5414), 281–282 (1973). [CrossRef]
  5. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006). [CrossRef] [PubMed]
  6. L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005). [CrossRef] [PubMed]
  7. X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. 19(17), 2213–2217 (2007). [CrossRef]
  8. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006). [CrossRef] [PubMed]
  9. H. Gao, Z. Liu, J. Zhang, G. Zhang, and G. Xie, “Precise replication of antireflective nanostructures from biotemplates,” Appl. Phys. Lett. 90(12), 123115 (2007). [CrossRef]
  10. R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Replication of fly eyes by the conformal-evaporated-film-by-rotation technique,” Nanotechnology 19(35), 355704 (2008). [CrossRef] [PubMed]
  11. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [CrossRef]
  12. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010). [CrossRef] [PubMed]
  13. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  14. P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009). [CrossRef]
  15. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010). [CrossRef]
  16. M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002). [CrossRef]
  17. Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009). [CrossRef] [PubMed]
  18. Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett. 96(15), 153305 (2010). [CrossRef]
  19. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008). [CrossRef]
  20. D.-S. Liu, T.-W. Lin, B.-W. Huang, F.-S. Juang, P.-H. Lei, and C.-Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures,” Appl. Phys. Lett. 94(14), 143502 (2009). [CrossRef]
  21. C.-E. Lee, Y.-C. Lee, H.-C. Kuo, T.-C. Lu, and S.-C. Wang, “High-brightness InGaN-GaN flip-chip light-emitting diodes with triple-light scattering layers,” IEEE Photon. Technol. Lett. 20(8), 659–661 (2008). [CrossRef]
  22. P.-W. Huang and Y. S. Wu, “Output power of AlGaInP light emitting diode improved by double roughening AlGaInP surfaces,” Electrochem. Solid-State Lett. 13(5), H163–H165 (2010). [CrossRef]
  23. Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology 19(25), 255605 (2008). [CrossRef] [PubMed]
  24. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007). [CrossRef]
  25. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981). [CrossRef]
  26. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73(9), 1105–1112 (1983). [CrossRef]
  27. A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep. 452(2-3), 33–88 (2007). [CrossRef]
  28. A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Polarization-dependent tunneling of light in gradient optics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016603 (2007). [CrossRef] [PubMed]
  29. W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuu, and R. H. Horng, “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” Appl. Phys. Lett. 88(18), 181113 (2006). [CrossRef]
  30. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009). [CrossRef]
  31. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited