OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S2 — Mar. 14, 2011
  • pp: A194–A200

Energy transfer from InGaN quantum wells to Au nanoclusters via optical waveguiding

G. W. Shu, C. C. Lin, H. T. Lin, T. N. Lin, J. L. Shen, C. H. Chiu, Z. Y. Li, H. C. Kuo, C. C. Lin, S. C. Wang, C. A. J. Lin, and W. H. Chang  »View Author Affiliations

Optics Express, Vol. 19, Issue S2, pp. A194-A200 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (878 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the first observation of resonance energy transfer from InGaN quantum wells to Au nanoclusters via optical waveguiding. Steady-state and time-resolved photoluminescence measurements provide conclusive evidence of resonance energy transfer and obtain an optimum transfer efficiency of ~72%. A set of rate equations is successfully used to model the kinetics of resonance energy transfer.

© 2011 OSA

OCIS Codes
(260.2160) Physical optics : Energy transfer
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(160.4236) Materials : Nanomaterials

ToC Category:
Radiative Transfer

Original Manuscript: January 5, 2011
Manuscript Accepted: February 25, 2011
Published: March 9, 2011

G. W. Shu, C. C. Lin, H. T. Lin, T. N. Lin, J. L. Shen, C. H. Chiu, Z. Y. Li, H. C. Kuo, C. C. Lin, S. C. Wang, C. A. J. Lin, and W. H. Chang, "Energy transfer from InGaN quantum wells to Au nanoclusters via optical waveguiding," Opt. Express 19, A194-A200 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Förster, “Intermolecular energy transference and fluorescence,” Annalen der Physik 2, 55–75 (1948). [CrossRef]
  2. J. R. Lakowicz, Principle of Fluorescence Spectroscopy (Kluwer Academic, 1999).
  3. G. P. Gorbenko and Y. A. Domanov, “Energy transfer method in membrane studies: some theoretical and practical aspects,” J. Biochem. Biophys. Methods 52(1), 45–58 (2002). [CrossRef] [PubMed]
  4. G. D. Scholes, “Long-range resonance energy transfer in molecular systems,” Annu. Rev. Phys. Chem. 54(1), 57–87 (2003). [CrossRef]
  5. D. M. Willard, L. L. Carillo, J. Jung, and A. Van Orden, “CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay,” Nano Lett. 1(9), 469–474 (2001). [CrossRef]
  6. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004). [CrossRef] [PubMed]
  7. R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008). [CrossRef] [PubMed]
  8. D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Förster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999). [CrossRef]
  9. V. M. Agranovich, D. M. Basko, G. C. La Rocca, and F. Bassani, “New concept for organic LEDs: non-radiative electron energy transfer from semiconductor quantum well to organic overlayer,” Synth. Met. 116(1-3), 349–351 (2001). [CrossRef]
  10. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642–646 (2004). [CrossRef] [PubMed]
  11. G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006). [CrossRef]
  12. G. Itskos, G. Heliotis, P. Lagoudakis, J. Lupton, N. Barradas, E. Alves, S. Pereira, I. Watson, M. Dawson, J. Feldmann, R. Murray, and D. Bradley, “Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures,” Phys. Rev. B 76(3), 035344 (2007). [CrossRef]
  13. C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic-organic emitters,” J. Phys. D Appl. Phys. 41(9), 094006 (2008). [CrossRef]
  14. G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, “White light emission via cascade Förster energy transfer in (Ga, In)N quantum well/polymer blend hybrid structures,” Nanotechnology 20(27), 275207 (2009). [CrossRef] [PubMed]
  15. C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, “Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications,” ACS Nano 3(2), 395–401 (2009). [CrossRef] [PubMed]
  16. M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek., “Time-resolved photoluminescence measurements of quantum dots in InGaN multiple quantum wells and light-emitting diodes,” J. Appl. Phys. 86(2), 1114–1118 (1999). [CrossRef]
  17. G. W. Shu, C. C. Lin, H. P. Chung, J. L. Shen, C. A. J. Lin, C. H. Lee, W. H. Chang, W. H. Wang, H. H. Wang, H. I. Yeh, C. T. Yuan, and J. Tang, “Interrelation of transport and optical properties in gold nanoclusters,” Appl. Phys. Lett. 95, 26191 (2009).
  18. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. 77(19), 193402 (2008). [CrossRef]
  19. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996). [CrossRef] [PubMed]
  20. A. van Driel, I. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited