OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S3 — May. 9, 2011
  • pp: A258–A269

Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells

Jung Woo Leem and Jae Su Yu  »View Author Affiliations


Optics Express, Vol. 19, Issue S3, pp. A258-A269 (2011)
http://dx.doi.org/10.1364/OE.19.00A258


View Full Text Article

Enhanced HTML    Acrobat PDF (1263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Indium tin oxide (ITO) thin films with relatively high transparency and low absorption are prepared by glancing angle deposition (GLAD) method and their effect on the device performance of a-Si:H/μc-Si:H tandem thin film solar cells is theoretically investigated by applying the experimentally measured physical data of the fabricated films to the simulation parameters. The GLAD of ITO produces inclined porous columnar nanostructures due to the atomic shadowing effect. With increasing the incident flux angle, the columns are increasingly inclined, thus resulting in the improved transmission property as well as the decrease of the refractive index and extinction coefficient because of enhanced porosity within the film. Furthermore, the antireflection characteristics are improved over a wide wavelength range of 300-1100 nm. For a-Si:H/μc-Si:H tandem thin film solar cell structure incorporated with the 0° ITO/80° ITO bi-layer structure, the conversion efficiency (η) of 13.6% is obtained from simulation under AM1.5g illumination, indicating an efficiency improvement compared to the device with the 0° ITO/0° ITO bi-layer structure (i.e. η = 12.58%).

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.1210) Thin films : Antireflection coatings
(310.1860) Thin films : Deposition and fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Photovoltaics

History
Original Manuscript: January 5, 2011
Revised Manuscript: March 5, 2011
Manuscript Accepted: March 9, 2011
Published: March 30, 2011

Citation
Jung Woo Leem and Jae Su Yu, "Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells," Opt. Express 19, A258-A269 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S3-A258


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. S. Chae, “A modified transparent conducting oxide for flat panel displays only,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1282–1286 (2001). [CrossRef]
  2. C. S. Chang, S. J. Chang, Y. K. Su, Y. C. Lin, Y. P. Hsu, S. C. Shei, S. C. Chen, C. H. Liu, and U. H. Liaw, “InGaN/GaN light-emitting diodes with ITO p-contact layers prepared by RF sputtering,” Semicond. Sci. Technol. 18(4), L21–L23 (2003). [CrossRef]
  3. S. Y. Lien, B. R. Wu, J. C. Liu, and D. S. Wuu, “Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD,” Thin Solid Films 516(5), 747–750 (2008). [CrossRef]
  4. J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Tech. 132(1), 45–48 (2000). [CrossRef]
  5. T. Maruyama and K. Tabata, “Indium tin oxide thin films prepared by chemical vapor deposition from metal acetates,” Jpn. J. Appl. Phys. 29(Part 2, No. 2), L355–L357 (1990). [CrossRef]
  6. C. May and J. Strümpfel, “ITO coating by reactive magnetron sputtering–comparison of properties from DC and MF processing,” Thin Solid Films 351(1-2), 48–52 (1999). [CrossRef]
  7. S. S. Kim, S. Y. Choi, C. G. Park, and H. W. Jin, “Transparent conductive ITO thin films through the sol-gel process using metal salts,” Thin Solid Films 347(1-2), 155–160 (1999). [CrossRef]
  8. E. Benamar, M. Rami, C. Messaoudi, D. Sayah, and A. Ennaoui, “Structural, optical and electrical properties of indium tin oxide thin films prepared by spray pyrolysis,” Sol. Energy Mater. Sol. Cells 56(2), 125–139 (1998).
  9. J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88(1), 013501 (2006). [CrossRef]
  10. X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, “Refractive-index-matched indium-tin-oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys. 48(12), 120203 (2009). [CrossRef]
  11. J. J. Steele, J. P. Gospodyn, J. C. Sit, and M. J. Brett, “Impact of morphology on high-speed humidity sensor performance,” IEEE Sens. J. 6(1), 24–27 (2006). [CrossRef]
  12. A. Kundt, “Ueber doppelbrechung des lichtes in metallschichten, welche durch zerstäuben einer kathode hergestellt sind,” Ann. Phys. Chem. 263(1), 59–71 (1886). [CrossRef]
  13. K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13(3), 1032–1035 (1995). [CrossRef]
  14. D. X. Ye, T. Karabacak, R. C. Picu, G. C. Wang, and T. M. Lu, “Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation,” Nanotechnology 16(9), 1717–1723 (2005). [CrossRef]
  15. K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010). [CrossRef]
  16. Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008). [CrossRef]
  17. P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009). [CrossRef]
  18. M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007). [CrossRef]
  19. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  20. H. Keppner, J. Meier, P. Torres, D. Fischer, and A. Shah, “Microcrystalline silicon and micromorph tandem solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 169–177 (1999). [CrossRef]
  21. S. Michael and A. Bates, “The design and optimization of advanced multijunction solar cells using the Silvaco ATLAS software package,” Sol. Energy Mater. Sol. Cells 87(1-4), 785–794 (2005). [CrossRef]
  22. M. Baudrit and C. Algora, “Theoretical optimization of GaInP/GaAs dual-junction solar cell: Toward a 36% efficiency at 1000 suns,” Phys. Status Solidi 207(2), 474–478 (2010) (a). [CrossRef]
  23. S. T. Chang, M. Tang, R. Y. He, W. C. Wang, Z. Pei, and C. Y. Kung, “TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline-silicon/hydrogenated amorphous silicon-germanium PIN solar cells,” Thin Solid Films 518(6), S250–S254 (2010). [CrossRef]
  24. S. Y. Myong, K. Sriprapha, S. Miyajima, M. Konagai, and A. Yamada, “High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer,” Appl. Phys. Lett. 90(26), 263509 (2007). [CrossRef]
  25. NREL’s Renewable Resource Data Center, http://rredc.nrel.gov/solar/spectra , Accessed 30 Nov. (2010).
  26. ATLAS User's Manual, Silvaco international, June (2008).
  27. S. Nitta, S. Itoh, M. Tanaka, T. Endo, and A. Hatano, “Optical properties of a-Si:H and a-SixCl1-x:H films prepared by glow-discharge deposition,” Sol. Energy Mater. 8(1-3), 249–257 (1982). [CrossRef]
  28. M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000). [CrossRef]
  29. SOPRA, http://www.sopra-sa.com , Accessed 1 Dec. (2010).
  30. M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc. 52(8), 443–446 (1969). [CrossRef]
  31. Y. Sato, K. Yanagisawa, N. Oka, S. I. Nakamura, and Y. Shigesato, “Sputter deposition of Al-doped ZnO films with various incident angles,” J. Vac. Sci. Technol. A 27(5), 1166–1171 (2009). [CrossRef]
  32. M. Suzuki, T. Ito, and Y. Taga, “Photocatalysis of sculptured thin films of TiO2,” Appl. Phys. Lett. 78(25), 3968–3970 (2001). [CrossRef]
  33. J. M. Nieuwenhuizen and H. B. Haanstra, “Microfractography of thin films,” Philips Tech. Rev. 27, 87–91 (1966).
  34. R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226(2), 196–201 (1993). [CrossRef]
  35. E. Çetinörgü, S. Goldsmith, and R. L. Boxman, “Air annealing effects on the optical properties of ZnO–SnO2 thin films deposited by a filtered vacuum arc deposition system,” Semicond. Sci. Technol. 21(3), 364–369 (2006). [CrossRef]
  36. M. G. Moharam, “Coupled-wave analysis of two-dimensional gratings,” Proc. SPIE 883, 8–11 (1988).
  37. X. Xiao, G. Dong, J. Shao, H. He, and Z. Fan, “Optical and electrical properties of SnO2:Sb thin films deposited by oblique angle deposition,” Appl. Surf. Sci. 256(6), 1636–1640 (2010). [CrossRef]
  38. J. W. Leem, Y. T. Lee, and J. S. Yu, “Optimum design of InGaP/GaAs dual-junction solar cells with different tunnel diodes,” Opt. Quantum Electron. 41(8), 605–612 (2009). [CrossRef]
  39. B. Sang, K. Dairiki, A. Yamada, and M. Konagai, “High-efficiency amorphous silicon solar cells with ZnO as front contact,” Jpn. J. Appl. Phys. 38(Part 1, No. 9A), 4983–4988 (1999). [CrossRef]
  40. Y. Huang, S. Dai, S. Chen, C. Zhang, Y. Sui, S. Xiao, and L. Hu, “Theoretical modeling of the series resistance effect on dye-sensitized solar cell performance,” Appl. Phys. Lett. 95(24), 243503 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited