OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 19, Iss. S4 — Jul. 4, 2011
  • pp: A664–A672

Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit

Rana Biswas and Chun Xu  »View Author Affiliations


Optics Express, Vol. 19, Issue S4, pp. A664-A672 (2011)
http://dx.doi.org/10.1364/OE.19.00A664


View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a periodically patterned conformal photonic-plasmonic crystal based solar architecture for a nano-crystalline silicon solar cell, through rigorous scattering matrix simulations. The solar cell architecture has a periodic array of tapered silver nano-pillars as the back-reflector coupled with a conformal periodic structure at the top of the cell. The absorption and maximal current, averaged over the entire range of wavelengths, for this solar cell architecture is at the semi-classical 4n2 limit over a range of common thicknesses (500-1500 nm) and slightly above the 4n2 limit for a 500 nm nc-Si cell. The absorption exceeds the 4n2 limit, corrected for reflection loss at the top surface. The photonic crystal cell current is enhanced over the flat Ag back-reflector by 60%, for a thick 1000 nm nc-Si layer, where predicted currents exceed 31 mA/cm2. The conformal structure at the top surface focuses light within the absorber layer. There is plasmonic concentration of light, with intensity enhancements exceeding 7, near the back reflector that substantially enhances absorption.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photovoltaics

History
Original Manuscript: March 14, 2011
Revised Manuscript: April 23, 2011
Manuscript Accepted: April 29, 2011
Published: May 17, 2011

Citation
Rana Biswas and Chun Xu, "Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit," Opt. Express 19, A664-A672 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S4-A664


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004). [CrossRef]
  2. J. Yang, B. Yan, G. Yue, and S. Guha, “Light trapping in hydrogenated amorphous and nano-crystalline silicon thin film solar cells,” MRS Bull. 1153, 247–253 (2009).
  3. F.-J. Haug, T. Soderstrom, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micromorph tandem solar cells on flexible low-cost plastic substrates,” Sol. Energy Mater. Sol. Cells 3, 884–887 (2009).
  4. G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95(26), 263501 (2009). [CrossRef]
  5. R. Biswas, J. Bhattacharya, B. Lewis, N. Chakravarty, and V. Dalal, “Enhanced nano-crystalline silicon solar cell with a photonic crystal back reflector,” Sol. Energy Mater. Sol. Cells 94(12), 2337–2342 (2010). [CrossRef]
  6. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  7. A. S. Ferlauto, J. Koh, P. I. Rovira, C. R. Wronski, and R. W. Collins, “Evolutionary phase diagrams for plasma-enhanced chemical vapor deposition of silicon thin films from hydrogen-diluted silane,” Appl. Phys. Lett. 75, 2286–2289 (2002).
  8. A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88(1), 148–160 (2000). [CrossRef]
  9. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982). [CrossRef]
  10. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984). [CrossRef]
  11. J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427 (2004). [CrossRef]
  12. L. R. Dahal, D. Sainju, J. Li, J. A. Stoke, N. Podraza, X. Deng, and R. W. Collins, “Plasmonic characteristics of Ag/ZnO back-reflectors for thin film Si photovoltaics”, 33rd IEEE Photovoltaic Specialists Conference, 2008. pg.1–6. DOI 10.1109/PVSC.2008.4922502.
  13. J. Nelson, The Physics of Solar Cells (Imperial College, 2003), p. 279.
  14. H. Zhao, B. Ozturk, E. A. Schiff, B. Yan, J. Yang, and S. Guha, “Plasmonic light-trapping and quantum efficiency measurements on nc-Si solar cells and Si-on insulator devices,” MRS Bull. 1245, 59–64 (2010).
  15. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010). [CrossRef] [PubMed]
  16. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010). [CrossRef] [PubMed]
  17. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008). [CrossRef]
  18. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  19. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  20. B. Curtin, R. Biswas, and V. Dalal, “Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells,” Appl. Phys. Lett. 95(23), 231102 (2009). [CrossRef]
  21. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010). [CrossRef]
  22. A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express 17(11), 8871–8878 (2009). [CrossRef] [PubMed]
  23. H. Sai, H. Fujiwara, and M. Kondo, “Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 1087–1090 (2009). [CrossRef]
  24. H. Haase and H. Steibig, “Thin film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007). [CrossRef]
  25. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  26. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4 Pt 2), 046607 (2003). [CrossRef] [PubMed]
  27. The Electronic Handbook of Optical Constants of Solids, E. D Palik, ed. (Academic Press, 1999)
  28. D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(Suppl 2), A95–A107 (2011). [CrossRef] [PubMed]
  29. H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited