OSA's Digital Library

Energy Express

Energy Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. S6 — Nov. 7, 2011
  • pp: A1241–A1249

Phosphonate functionalized oxadiazole derivative as an efficient electron transporting material for solution-processed blue electrophosphorescent devices

Jianhong Lü, Zhihua Ma, Bin Meng, Dan Sui, Baohua Zhang, Zhiyuan Xie, Xiabin Jing, Fosong Wang, Junqiao Ding, and Lixiang Wang  »View Author Affiliations

Optics Express, Vol. 19, Issue S6, pp. A1241-A1249 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An efficient electron transporting material, P-OXD (1,3-bis[(4-(4-diethylphosphoryl-butyl-phenyl))-1,3,4-oxidiazol-2-yl]phenylene), has been synthesized and thoroughly characterized. Due to its alcohol-soluble nature, P-OXD can be spin-coated atop the light emitting layer to form high quality film without dissolving the underlying layer. As a consequence, the double-layer blue electrophosphorescent device has been successfully fabricated, giving a peak luminous efficiency of 10.5 cd/A, and a maximum brightness of 8200 cd/m2 with the Commission Internationale de L’Eclairage (CIE) coordinates of (0.16, 0.33). The promising results indicate that P-OXD has a potential application in solution-processed multilayer polymer light-emitting diodes.

© 2011 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(230.0250) Optical devices : Optoelectronics
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Light-Emitting Diodes

Original Manuscript: July 27, 2011
Revised Manuscript: September 14, 2011
Manuscript Accepted: September 14, 2011
Published: November 7, 2011

Virtual Issues
Organic Light-Emitting Diodes (2011) Optics Express

Jianhong Lü, Zhihua Ma, Bin Meng, Dan Sui, Baohua Zhang, Zhiyuan Xie, Xiabin Jing, Fosong Wang, Junqiao Ding, and Lixiang Wang, "Phosphonate functionalized oxadiazole derivative as an efficient electron transporting material for solution-processed blue electrophosphorescent devices," Opt. Express 19, A1241-A1249 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature395(6698), 151–154 (1998). [CrossRef]
  2. I. D. Parker, Y. Cao, and C. Y. Yang, “Lifetime and degradation effects in polymer light-emitting diodes,” J. Appl. Phys.85(4), 2441–2447 (1999). [CrossRef]
  3. T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009). [CrossRef]
  4. F. So and D. Kondakov, “Degradation mechanisms in small-molecule and polymer organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)22(34), 3762–3777 (2010). [CrossRef] [PubMed]
  5. C. V. Hoven, A. Garcia, G. C. Bazan, and T.-Q. Nguyen, “Recent Applications of conjugated polyelectrolytes in optoelectronic devices,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3793–3810 (2008). [CrossRef]
  6. H. Jiang, P. Taranekar, J. R. Reynolds, and K. S. Schanze, “Conjugated polyelectrolytes: synthesis, photophysics, and applications,” Angew. Chem. Int. Ed. Engl.48(24), 4300–4316 (2009). [CrossRef] [PubMed]
  7. F. Huang, H. Wu, and Y. Cao, “Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices,” Chem. Soc. Rev.39(7), 2500–2521 (2010). [CrossRef] [PubMed]
  8. C. Zhong, C. Duan, F. Huang, H. Wu, and Y. Cao, “Materials and devices toward fully solution processable organic light-emitting diodes,” Chem. Mater.23(3), 326–340 (2011). [CrossRef]
  9. C. Duan, L. Wang, K. Zhang, X. Guan, and F. Huang, “Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1665–1669 (2011). [CrossRef] [PubMed]
  10. J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend, and W. T. S. Huck, “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc.133(4), 683–685 (2011). [CrossRef] [PubMed]
  11. X. Xu, B. Han, J. Chen, J. Peng, H. Wu, and Y. Cao, “2,7-Carbazole-1,4-phenylene Copolymers with polar side chains for cathode modifications in polymer light-emitting diodes,” Macromolecules44(11), 4204–4212 (2011). [CrossRef]
  12. F. Huang, Y.-H. Niu, Y. Zhang, J.-W. Ka, M. S. Liu, and A. K. Y. Jen, “A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(15), 2010–2014 (2007). [CrossRef]
  13. X. Gong, S. Wang, D. Moses, G. C. Bazan, and A. J. Heeger, “Multilayer polymer light-emitting diodes: White-light emission with high efficiency,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2053–2058 (2005). [CrossRef]
  14. R. Yang, Y. Xu, X.-D. Dang, T.-Q. Nguyen, Y. Cao, and G. C. Bazan, “Conjugated oligoelectrolyte electron transport/injection layers for organic optoelectronic devices,” J. Am. Chem. Soc.130(11), 3282–3283 (2008). [CrossRef] [PubMed]
  15. T. V. Pho, P. Zalar, A. Garcia, T.-Q. Nguyen, and F. Wudl, “Electron injection barrier reduction for organic light-emitting devices by quinacridone derivatives,” Chem. Commun. (Camb.)46(43), 8210–8212 (2010). [CrossRef] [PubMed]
  16. A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron transport materials for organic light-emitting diodes,” Chem. Mater.16(23), 4556–4573 (2004). [CrossRef]
  17. G. Hughes and M. R. Bryce, “Electron-transporting materials for organic electroluminescent and electrophosphorescent devices,” J. Mater. Chem.15(1), 94–107 (2005). [CrossRef]
  18. X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett.88(2), 021107 (2006). [CrossRef]
  19. B. Zhang, C. Qin, J. Ding, L. Chen, Z. Xie, Y. Cheng, and L. Wang, “High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer,” Adv. Funct. Mater.20(17), 2951–2957 (2010). [CrossRef]
  20. L. Chen, J. Ding, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Twofold terminal post-functionalization of acetylacetone with hole- and electron-transporting fragments,” Tetrahedron Lett.51(35), 4612–4616 (2010). [CrossRef]
  21. T. Beissel, R. E. Powers, T. N. Parac, and K. N. Raymond, “Coordination number incommensurate cluster formation. 8. Dynamic isomerization of a supramolecular tetrahedral M4L6 cluster,” J. Am. Chem. Soc.121(17), 4200–4206 (1999). [CrossRef]
  22. C. S. Wang, G. Y. Jung, A. S. Batsanov, M. R. Bryce, and M. C. Petty, “New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazole-pyridine and 1,3,4-oxadiazole-pyrimidine hybrids,” J. Mater. Chem.12(2), 173–180 (2002). [CrossRef]
  23. K. Meerholz, “Device physics: enlightening solutions,” Nature437(7057), 327–328 (2005). [CrossRef] [PubMed]
  24. R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host-guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003). [CrossRef]
  25. F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi, and A. K. Y. Jen, “Highly efficient polymer white-light-emitting diodes based on lithium salts doped electron transporting layer,” Adv. Mater. (Deerfield Beach Fla.)21(3), 361–365 (2009). [CrossRef]
  26. V. E. Choong, M. G. Mason, C. W. Tang, and Y. G. Gao, “Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum,” Appl. Phys. Lett.72(21), 2689–2691 (1998). [CrossRef]
  27. Q. T. Le, L. Yan, Y. G. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, “Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces,” J. Appl. Phys.87(1), 375–379 (2000). [CrossRef]
  28. M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited