OSA's Digital Library

Energy Express

Energy Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. S6 — Nov. 7, 2011
  • pp: A1265–A1271

Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host

Lian Duan, Deqiang Zhang, Yanrui Li, Guohui Zhang, and Yong Qiu  »View Author Affiliations


Optics Express, Vol. 19, Issue S6, pp. A1265-A1271 (2011)
http://dx.doi.org/10.1364/OE.19.0A1265


View Full Text Article

Enhanced HTML    Acrobat PDF (1333 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ideal n-type layers are highly desired for high performance organic light emitting diodes (OLEDs). For the first time, we studied the combination of a low-temperature-evaporable n-dopant KBH4 and a high mobility electron transport material 9,10-bis(3-(pyridin-3-yl)phenyl)anthracene (DPyPA). The excellent transporting property of the DPyPA: KBH4 layer allows the fine tuning of the OLED performance by varying the thickness of the n-doped layer in a wide range (from 10 nm to 50 nm, 100 nm, 150 nm and 200 nm). The device with the optimized n-type layer thickness of 150 nm shows the best performance with a high current efficiency of 27.60 cd/A at the brightness 10,000 cd/m2, which is about 40% higher than the device with a 10 nm n-type layer (19.95 cd/A at 10,000 cd/m2). The high performance is attributed to the optimization of optical path and the decrease of the loss in the organic layer/cathode interface due to the thick n-doped layer.

© 2011 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(230.4170) Optical devices : Multilayers

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: August 2, 2011
Revised Manuscript: October 7, 2011
Manuscript Accepted: October 7, 2011
Published: November 7, 2011

Virtual Issues
Organic Light-Emitting Diodes (2011) Optics Express

Citation
Lian Duan, Deqiang Zhang, Yanrui Li, Guohui Zhang, and Yong Qiu, "Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host," Opt. Express 19, A1265-A1271 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S6-A1265


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. W. Tang and S. A. Vanslyke, “Organic Electroluminescent Diodes,” Appl. Phys. Lett.51(12), 913–915 (1987). [CrossRef]
  2. M. Pfeiffer, S. R. Forrest, K. Leo, and M. E. Thompson, “Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays,” Adv. Mater. (Deerfield Beach Fla.)14(22), 1633–1636 (2002). [CrossRef]
  3. T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin, and J. Kido, “High-efficiency stacked white organic light-emitting diodes,” Appl. Phys. Lett.92(4), 043301 (2008). [CrossRef]
  4. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature459(7244), 234–238 (2009). [CrossRef] [PubMed]
  5. J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett.73(20), 2866–2868 (1998). [CrossRef]
  6. J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Y. Liu, “Low-voltage organic electroluminescent devices using pin structures,” Appl. Phys. Lett.80(1), 139–141 (2002). [CrossRef]
  7. C. Chang, M. Hsieh, J. Chen, S. Hwang, and C. H. Chen, “- Highly power efficient organic light-emitting diodes with a p-doping layer,” Appl. Phys. Lett.89(25), 253504 (2006). [CrossRef]
  8. R. Meerheim, K. Walzer, M. Pfeiffer, and K. Leo, “Ultrastable and efficient red organic light emitting diodes with doped transport layers,” Appl. Phys. Lett.89(6), 061111 (2006). [CrossRef]
  9. T. Oyamada, H. Sasabe, C. Adachi, S. Murase, T. Tominaga, and C. Maeda, “Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer,” Appl. Phys. Lett.86(3), 033503 (2005). [CrossRef]
  10. K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang, and T.-W. Lee, “Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant,” Adv. Funct. Mater.20(11), 1797–1802 (2010). [CrossRef]
  11. Q. Liu, D. Q. Zhang, L. Duan, G. H. Zhang, L. D. Wang, Y. Cao, and Y. Qiu, “Thermally Decomposable KBH(4) as an Efficient Electron Injection Material for Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys.48(8), 080205 (2009). [CrossRef]
  12. Y. D. Sun, L. Duan, D. Q. Zhang, J. Qiao, G. F. Dong, L. D. Wang, and Y. Qiu, “A Pyridine-Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Light-Emitting Diodes,” Adv. Funct. Mater.21(10), 1881–1886 (2011). [CrossRef]
  13. M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of Connecting Unit Architecture on the Performance of Tandem Organic Light-Emitting Devices,” Adv. Funct. Mater.17(14), 2509–2514 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited