OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10029–10040

Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes

Zongfu Yu and Shanhui Fan  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10029-10040 (2011)
http://dx.doi.org/10.1364/OE.19.010029


View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The extraordinary spectral sensitivity of surface plasmon resonance (SPR) sensors is commonly attributed to the modal overlap or unique dispersion of surface plasmons. In contrast to this belief, we show that such high sensitivity is due to the multi-mode nature of the sensing scheme. This concept of multi-mode sensing can be applied to dielectric systems as well in order to achieve similar extraordinary spectral sensitivity. We also show that there is a fundamental constraint between the spectral sensitivity and quality factor in such multi-mode sensing approach.

© 2011 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Sensors

History
Original Manuscript: November 17, 2010
Revised Manuscript: January 12, 2011
Manuscript Accepted: January 12, 2011
Published: May 9, 2011

Citation
Zongfu Yu and Shanhui Fan, "Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes," Opt. Express 19, 10029-10040 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6(3), 215–225 (1991). [CrossRef]
  2. B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991). [CrossRef] [PubMed]
  3. M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002). [CrossRef] [PubMed]
  4. V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997). [CrossRef] [PubMed]
  5. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995). [CrossRef] [PubMed]
  6. R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993). [CrossRef]
  7. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002). [CrossRef] [PubMed]
  8. C. L. Baird and D. G. Myszka, “Current and emerging commercial optical biosensors,” J. Mol. Recognit. 14(5), 261–268 (2001). [CrossRef] [PubMed]
  9. J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 207–211 (1997). [CrossRef]
  10. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  11. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
  12. G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001). [CrossRef]
  13. B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983). [CrossRef]
  14. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002). [CrossRef]
  15. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005). [CrossRef]
  16. A. Artar, A. A. Yanik, and H. Altug, “Fabry–Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009). [CrossRef]
  17. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005). [CrossRef]
  18. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003). [CrossRef]
  19. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004). [CrossRef] [PubMed]
  20. M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010). [CrossRef] [PubMed]
  21. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006). [CrossRef]
  22. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010). [CrossRef]
  23. C. Chung-Yen, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quant. Electron. 12(1), 134–142 (2006). [CrossRef]
  24. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  25. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003). [CrossRef]
  26. H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sens. Actuators B Chem. 87(2), 244–249 (2002). [CrossRef]
  27. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008). [CrossRef] [PubMed]
  28. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). [CrossRef] [PubMed]
  29. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009). [CrossRef]
  30. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  31. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light, 2 ed. pp.18 (Princeton University Press, Princeton, New Jersey, 2008).
  32. A. Raman, and S. Fan, “Perturbation theory for plasmonic modulation and sensing,” under review (2010).
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited