OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10041–10048

Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber

Lai Liu, Guanshi Qin, Qijun Tian, Dan Zhao, and Weiping Qin  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10041-10048 (2011)
http://dx.doi.org/10.1364/OE.19.010041


View Full Text Article

Enhanced HTML    Acrobat PDF (1067 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically investigate mid-infrared supercontinuum generation in single mode fluoride fiber pumped by 1.56 μm picosecond fiber lasers. To get high energy conversion efficiency in mid-infrared region, the ratio of power generated in 2.5 ~5 μm range to the total input power for supercontinuum generation is optimized by varying the pulse width, peak power and fiber length. The long wavelength edge of the supercontinuum spectrum can be extended to 4.8 μm in a 100 cm long fluoride fiber pumped by a 1.56 μm fiber laser with a pulse width of 4 ps and a peak power of 100 kW, and the corresponding ratio of power generated in 2.5 ~5 μm range to the total input power is about 44.6%. The spectral broadening is mainly caused by self-phase modulation, stimulated Raman scattering and four-wave mixing. The simulated results show that high average power supercontinuum light source in 2.5 ~5 μm range could be obtained in fluoride fibers pumped by 1.56 μm picosecond fiber lasers.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 19, 2011
Revised Manuscript: April 14, 2011
Manuscript Accepted: April 29, 2011
Published: May 9, 2011

Citation
Lai Liu, Guanshi Qin, Qijun Tian, Dan Zhao, and Weiping Qin, "Numerical investigation of mid-infrared supercontinuum generation up to 5 μm in single mode fluoride fiber," Opt. Express 19, 10041-10048 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10041


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
  3. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [PubMed]
  4. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16(18), 13651–13656 (2008). [PubMed]
  5. G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35(2), 136–138 (2010). [PubMed]
  6. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97(6), 061106 (2010).
  7. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [PubMed]
  8. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass–fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
  9. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010). [PubMed]
  10. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3-5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett. 35(17), 2907–2909 (2010). [PubMed]
  11. C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
  12. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontimuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006). [PubMed]
  13. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).
  14. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
  15. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13(2), 459–468 (1996).
  16. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic. Press, 2009).
  17. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19(12), 2886–2892 (2002).
  18. Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fiber,” Electron. Lett. 21(17), 723–724 (1985).
  19. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25(12), 3770–3775 (2007).
  20. D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited