OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10049–10056

Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation

Baoan Liu, Dongxing Wang, Chuan Shi, Kenneth B. Crozier, and Tian Yang  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10049-10056 (2011)
http://dx.doi.org/10.1364/OE.19.010049


View Full Text Article

Enhanced HTML    Acrobat PDF (1148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a device for reproducible achievement of enormous enhancement of local electric field intensities. In each device, a metallic spiral ring grating is employed for efficient excitation of local surface plasmon resonance in the tiny gap of a vertically oriented optical antenna. Radiation from the optical antenna is collimated by the ring grating which facilitates efficient collection. As a numerical example, for a gold nanosphere placed one nanometer above the center of a gold spiral ring grating, our simulations predict an increase in local electric field intensity of up to seven orders of magnitude compared to planewave illumination, and collection efficiencies of up to 68% by an objective with a numerical aperture of 0.7. Single molecule SERS application is discussed.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 11, 2011
Revised Manuscript: April 18, 2011
Manuscript Accepted: May 3, 2011
Published: May 9, 2011

Citation
Baoan Liu, Dongxing Wang, Chuan Shi, Kenneth B. Crozier, and Tian Yang, "Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation," Opt. Express 19, 10049-10056 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10049


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [PubMed]
  2. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
  4. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule raman spectroscopy at the junctions of large ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
  5. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005). [PubMed]
  6. A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, “Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches,” Nano Lett. 8(2), 485–490 (2008). [PubMed]
  7. J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008). [PubMed]
  8. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000). [PubMed]
  9. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004). [PubMed]
  10. J. M. McMahon, A.-I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009). [PubMed]
  11. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
  12. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008). [PubMed]
  13. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010). [PubMed]
  14. P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2011).
  15. J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94(26), 263114 (2009).
  16. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004). [PubMed]
  17. J. K. Daniels and G. Chumanov, “Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering,” J. Phys. Chem. B 109(38), 17936–17942 (2005).
  18. W.-H. Park, S.-H. Ahn, and Z. H. Kim, “Surface-enhanced Raman scattering from a single nanoparticle-plane junction,” ChemPhysChem 9(17), 2491–2494 (2008). [PubMed]
  19. Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010). [PubMed]
  20. T. Ohno and S. Miyanishi, “Study of surface plasmon chirality induced by Archimedes’ spiral grooves,” Opt. Express 14(13), 6285–6290 (2006). [PubMed]
  21. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008). [PubMed]
  22. Y. Zou, P. Steinvurzel, T. Yang, and K. B. Crozier, “Surface plasmon resonance of optical antenna atomic force microscope tips,” Appl. Phys. Lett. 94(17), 171107 (2009).
  23. D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19(3), 2148–2157 (2011). [PubMed]
  24. D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985).
  25. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010). [PubMed]
  26. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011). [PubMed]
  27. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
  28. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  29. E. J. Blackie, E. C. Le Ru, and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules,” J. Am. Chem. Soc. 131(40), 14466–14472 (2009). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited