OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10088–10101

Slow-light-enhanced codirectional couplers with negative index materials

L. Zhao and Wenhui Duan  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10088-10101 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (808 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical codirectional coupling structures consisting of two parallel planar waveguides with negative index materials (NIMs) are systematically studied in different configurations using coupled-mode theory under the weak-coupling condition. As a result, we find that the coupling strength between copropagating optical modes can be enhanced in such structures. More importantly, both our analytical derivations and numerical simulations clearly indicate that the slow-light effect in the waveguides with NIMs plays an essential role in such enhancement. The configuration with two conventional positive-index-material cores embedded in NIM claddings (or vice versa) can lead to the strongest enhancement because it can give rise to the slowest light in our scheme. Therefore, as well as offering a fundamental understanding of the slow-light effect in codirectional coupling structures with NIMs for constructing compact photonic devices, our investigations suggest a useful guideline for optimizing the design of codirectional couplers using slow-light systems for both the classical and quantum information processing and communication networks.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(350.3618) Other areas of optics : Left-handed materials

ToC Category:
Optical Devices

Original Manuscript: March 1, 2011
Revised Manuscript: April 14, 2011
Manuscript Accepted: April 30, 2011
Published: May 9, 2011

L. Zhao and Wenhui Duan, "Slow-light-enhanced codirectional couplers with negative index materials," Opt. Express 19, 10088-10101 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [PubMed]
  4. N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11, 682–687 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-7-682 . [PubMed]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [PubMed]
  6. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [PubMed]
  7. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
  8. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London) 466, 735–738 (2010).
  9. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105, 127401 (2010). [PubMed]
  10. A. Fang, Th. Koschny, and C. M. Soukoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82, 121102(R) (2010).
  11. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides,” Phys. Rev. E 67, 057602 (2003).
  12. A. C. Peacock and N. G. R. Broderick, “Guided modes in channel waveguides with a negative index of refraction,” Opt. Express 11, 2502–2510 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2502 . [PubMed]
  13. K. Halterman, J. Elson, and P. Overfelt, “Characteristics of bound modes in coupled dielectric waveguides containing negative index media,” Opt. Express 11, 521–529 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-6-521 . [PubMed]
  14. K. L. Tsakmakidis, C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, “Surface plasmon polaritons in generalized slab heterostructures with negative permittivity and permeability,” Phys. Rev. B 73, 085104 (2006).
  15. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature (London) 450, 397–401 (2007).
  16. K. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, “Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures,” Appl. Phys. Lett. 89, 201103 (2006).
  17. X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett. 95, 071111 (2009).
  18. V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett. 96, 211121 (2010).
  19. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011). [PubMed]
  20. A. Yariv, Quantum Electronics , 3rd ed. (Wiley, 1989), Chap. 22.
  21. K. Okamoto, Fundamentals of Optical Waveguides , 2nd ed. (Elsevier Academic Press, 2000), Chap. 4.
  22. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008). [PubMed]
  23. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
  24. A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009). [PubMed]
  25. S. Xiao, L. Shen, and S. He, “A novel directional coupler utilizing a left-handed material,” IEEE Photon. Technol. Lett. 16, 171–173, (2004).
  26. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
  27. J. B. Khurgin, “Slow light in various media, a tutorial,” Adv. Opt. Photon. 2, 287–318 (2010).
  28. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).
  29. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
  30. M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
  31. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited