OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10111–10123

High-speed, sub-Nyquist interferometry

Tao Wu, Jesus D. Valera, and Andrew J. Moore  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10111-10123 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1286 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The velocity measurement limit in dynamic interferometry is vNyq , the velocity at which the interferogram is sampled at the Nyquist limit. We show that vNyq can be exceeded by assuming continuity of the surface motion and unwrapping the velocity modulo 2vNyq . The technique was demonstrated in a high-speed speckle pattern interferometer with spatial phase stepping. Surface velocities of 4vNyq were measured experimentally. With a reduced exposure, high-speed sub-Nyquist interferometry could be implemented up to a maximum acceleration of vNyq/ts , where ts is the detector frame period.

© 2011 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 10, 2011
Revised Manuscript: April 21, 2011
Manuscript Accepted: April 21, 2011
Published: May 9, 2011

Tao Wu, Jesus D. Valera, and Andrew J. Moore, "High-speed, sub-Nyquist interferometry," Opt. Express 19, 10111-10123 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Kilpatrick, A. J. Moore, J. S. Barton, J. D. C. Jones, M. Reeves, and C. Buckberry, “Measurement of complex surface deformation by high-speed dynamic phase-stepped digital speckle pattern interferometry,” Opt. Lett. 25(15), 1068–1070 (2000). [CrossRef]
  2. W. N. MacPherson, M. Reeves, D. P. Towers, A. J. Moore, J. D. C. Jones, M. Dale, and C. Edwards, “Multipoint laser vibrometer for modal analysis,” Appl. Opt. 46(16), 3126–3132 (2007). [CrossRef] [PubMed]
  3. J. M. Huntley, G. H. Kaufmann, and D. Kerr, “Phase-shifted dynamic speckle pattern interferometry at 1 kHz,” Appl. Opt. 38(31), 6556–6563 (1999). [CrossRef]
  4. X. Colonna de Lega and P. Jacquot, “Deformation measurement with object-induced dynamic phase shifting,” Appl. Opt. 35(25), 5115–5121 (1996). [CrossRef] [PubMed]
  5. P. D. Ruiz, J. M. Huntley, Y. Shen, C. R. Coggrave, and G. H. Kaufmann, “Phase errors in low-frequency vibration measurement with high-speed phase-shifting speckle pattern interferometry,” Opt. Eng. 40(9), 1984–1992 (2001). [CrossRef]
  6. T. Wu, J. D. Jones, and A. J. Moore, “High-speed phase-stepped digital speckle pattern interferometry using a complementary metal-oxide semiconductor camera,” Appl. Opt. 45(23), 5845–5855 (2006). [CrossRef] [PubMed]
  7. A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, “Transient deformation measurement with electronic speckle pattern interferometry and a high-speed camera,” Appl. Opt. 38(7), 1159–1162 (1999). [CrossRef]
  8. A. Ettemeyer and Z. Wang, “Verfahren und Vorrichtung zur Bestimmung von Phasen und Phasendifferenzen,” Patent DE 195 13 234 (1995).
  9. H. van Brug, “Temporal phase unwrapping and its application in shearography systems,” Appl. Opt. 37(28), 6701–6706 (1998). [CrossRef]
  10. J. E. Greivenkamp, “Sub-Nyquist interferometry,” Appl. Opt. 26(24), 5245–5258 (1987). [CrossRef] [PubMed]
  11. M. Reeves, A. J. Moore, D. P. Hand, and J. D. C. Jones, “Dynamic shape measurement system for laser materials processing,” Opt. Eng. 42(10), 2923–2929 (2003). [CrossRef]
  12. A. J. P. Haasteren and H. J. Frankena, “Real-time displacement measurement using a multicamera phase-stepping speckle interferometer,” Appl. Opt. 33(19), 4137–4142 (1994). [CrossRef] [PubMed]
  13. A. L. Weijers, H. van Brug, and H. J. Frankena, “Polarization phase stepping with a savart element,” Appl. Opt. 37(22), 5150–5155 (1998). [CrossRef]
  14. T. D. Upton and D. W. Watt, “Optical and electronic design of a calibrated multichannel electronic interferometer for quantitative flow visualization,” Appl. Opt. 34(25), 5602–5610 (1995). [CrossRef] [PubMed]
  15. B. B. García, A. J. Moore, C. Pérez-López, L. Wang, and T. Tschudi, “Transient deformation measurement with electronic speckle pattern interferometry by use of a holographic optical element for spatial phase stepping,” Appl. Opt. 38(28), 5944–5947 (1999). [CrossRef]
  16. B. Barrientos García, A. J. Moore, C. Perez-Lopez, L. Wang, and T. Tschudi, “Spatial phase-stepped interferometry using a holographic optical element,” Opt. Eng. 38(12), 2069–2074 (1999). [CrossRef]
  17. J. Kranz, J. Lamprecht, A. Hettwer, and J. Schwider, “Fiber optical single frame speckle interferometer for measuring industrial surfaces,” Proc. SPIE 3407, 328–331 (1998). [CrossRef]
  18. A. Hettwer, J. Kranz, and J. Schwider, “Three channel phase-shifting interferometer using polarization-optics and a diffraction grating,” Opt. Eng. 39(4), 960–966 (2000). [CrossRef]
  19. J. E. Greivenkamp, A. E. Lowman, and R. J. Palum, “Sub-Nyquist interferometry: Implementation and measurement capability,” Opt. Eng. 35(10), 2962–2969 (1996). [CrossRef]
  20. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited