OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10131–10137

ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness

Aurélie Bessière, Sylvaine Jacquart, Kaustubh Priolkar, Aurélie Lecointre, Bruno Viana, and Didier Gourier  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10131-10137 (2011)
http://dx.doi.org/10.1364/OE.19.010131


View Full Text Article

Enhanced HTML    Acrobat PDF (1104 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

ZnGa2O4:Cr3+ is shown to be a new bright red UV excited long-lasting phosphor potentially suitable for in vivo imaging due to its 650 nm-750 nm emission range. Photoluminescence and X-ray excited radioluminescence show the 2E → 4A2 emission lines of both ideal Cr3+ and Cr3+ distorted by a neighboring antisite defect while long-lasting phosphorescence (LLP) and thermally stimulated luminescence (TSL) almost exclusively occur via distorted Cr3+. The most intense LLP is obtained with a nominal Zn deficiency and is related to a TSL peak at 335K. A mechanism for LLP and TSL is proposed, whereby the antisite defect responsible for the distortion at Cr3+ acts as a deep trap.

© 2011 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.2900) Materials : Optical storage materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(160.6990) Materials : Transition-metal-doped materials
(300.6250) Spectroscopy : Spectroscopy, condensed matter

ToC Category:
Materials

History
Original Manuscript: March 16, 2011
Revised Manuscript: April 28, 2011
Manuscript Accepted: May 5, 2011
Published: May 9, 2011

Citation
Aurélie Bessière, Sylvaine Jacquart, Kaustubh Priolkar, Aurélie Lecointre, Bruno Viana, and Didier Gourier, "ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness," Opt. Express 19, 10131-10137 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006). [CrossRef] [PubMed]
  2. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007). [CrossRef] [PubMed]
  3. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003). [CrossRef] [PubMed]
  4. Q. le Masne de Chermont, D. Scherman, M. Bessodes, F. Pellé, S. Maitrejean, J-P. Jolivet, C. Chanéac, D. Gourier, “Nanoparticules à luminescence persistante pour leur utilisation en tant qu'agent de diagnostique destiné à l'imagerie optique in vivo,” CNRS patent, internat. ext. WOEP06067950, WO2007048856, 30/10/2006.
  5. I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994). [CrossRef]
  6. I. K. Jeong, H. L. Park, and S. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998). [CrossRef]
  7. S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991). [CrossRef]
  8. L. E. Shea, R. K. Datta, and J. J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994). [CrossRef]
  9. P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009). [CrossRef]
  10. D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009). [CrossRef]
  11. R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. B 25(5), 925–946 (1969). [CrossRef]
  12. H. M. Kahan and R. M. Macfarlane, “Optical and microwave spectra of Cr3+ in the spinel ZnGa2O4,” J. Chem. Phys. 54(12), 5197–5205 (1971). [CrossRef]
  13. W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010). [CrossRef]
  14. W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: I. Identification of N-lines,” J. Lumin. 26(1-2), 53–66 (1981). [CrossRef]
  15. W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981). [CrossRef]
  16. W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Partial spectra,” J. Lumin. 26(1-2), 85–98 (1983). [CrossRef]
  17. J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1981). [CrossRef]
  18. W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990). [CrossRef]
  19. R. Hill, J. Craig, and G. V. Gibbs, “Systematics of the spinel structure type,” Phys. Chem. Miner. 4(4), 317–339 (1979). [CrossRef]
  20. G. Anoop, K. Mini Krishna, and M. K. Jayaraj, “Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films,” Appl. Phys., A Mater. Sci. Process. 90(4), 711–715 (2008). [CrossRef]
  21. A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009). [CrossRef]
  22. A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010). [CrossRef]
  23. A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010). [CrossRef]
  24. A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011). [CrossRef]
  25. K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited